Use of cell viability assay date improves the prediction accuracy of conventional quantitative structure-activity relationships models of animal carcinogenicity

Hao Zhu, Ivan Rusyn, Ann Richard, Alexander Tropsha

Research output: Contribution to journalArticlepeer-review

70 Scopus citations

Abstract

Background: To develop efficient approaches for rapid evaluation of chemical toxicity and human health risk of environmental compounds, the National Toxicology Program (NTP) in collaboration with the National Center for Chemical Genomics has initiated a project on high-throughput sceening (HTS) of environmental chemicals. The first HTS results for a set of 1,408 compounds tested for their effects on cell viability in six: different cell lines have recently become available via PubChem. Objective: We have explored these data in terms of their utility for predicting adverse health effects of the environmental agents. Methods and Results: Initially the classification k nearest neighbor (kNN) quantitative structure-activity relationship (QSAR) modeling method was applied to the HTS data only, for a cutated data set of 384 compounds. The resulting models had prediction accuracies for training, test. (containing 275 compounds together), and external validation (109 compounds) sets as high as 89%, 71%, and 74%, respectively. We then asked if HTS results could be of value in predicting rodent carcinogenicity. We identified 383 compounds for which data were available from both the Berkeley Carcinogenic Potency Database and NTP-HTS studies. We found that compounds classified by HTS as "actives" in at least one cell line were likely to be rodent carcinogens (sensitivity 77%); however, HTS "inactives" were far less informative (specificity 46%). Using chemical descriptors only, kNN QSAR modeling resulted in 62.3% prediction accuracy for rodent carcinogenicity applied to this data set. Importantly, the prediction accuracy of the model was significantly improved (72.7%) when chemical descriptors were augmented by HTS data, which were regarded as biological descriptors. Conclusions: Our studies suggest that combining NTP-HTS profiles with conventional chemical descriptors could considerably improve the predictive power of computational approaches in toxicology.

Original languageEnglish (US)
Pages (from-to)506-513
Number of pages8
JournalEnvironmental Health Perspectives
Volume116
Issue number4
DOIs
StatePublished - Apr 2008
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Public Health, Environmental and Occupational Health
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Use of cell viability assay date improves the prediction accuracy of conventional quantitative structure-activity relationships models of animal carcinogenicity'. Together they form a unique fingerprint.

Cite this