Urgency and necessity of Epstein-Barr virus prophylactic vaccines

Ling Zhong, Claude Krummenacher, Wanlin Zhang, Junping Hong, Qisheng Feng, Yixin Chen, Qinjian Zhao, Mu Sheng Zeng, Yi Xin Zeng, Miao Xu, Xiao Zhang

Research output: Contribution to journalReview articlepeer-review

8 Scopus citations

Abstract

Epstein-Barr virus (EBV), a γ-herpesvirus, is the first identified oncogenic virus, which establishes permanent infection in humans. EBV causes infectious mononucleosis and is also tightly linked to many malignant diseases. Various vaccine formulations underwent testing in different animals or in humans. However, none of them was able to prevent EBV infection and no vaccine has been approved to date. Current efforts focus on antigen selection, combination, and design to improve the efficacy of vaccines. EBV glycoproteins such as gH/gL, gp42, and gB show excellent immunogenicity in preclinical studies compared to the previously favored gp350 antigen. Combinations of multiple EBV proteins in various vaccine designs become more attractive approaches considering the complex life cycle and complicated infection mechanisms of EBV. Besides, rationally designed vaccines such as virus-like particles (VLPs) and protein scaffold-based vaccines elicited more potent immune responses than soluble antigens. In addition, humanized mice, rabbits, as well as nonhuman primates that can be infected by EBV significantly aid vaccine development. Innovative vaccine design approaches, including polymer-based nanoparticles, the development of effective adjuvants, and antibody-guided vaccine design, will further enhance the immunogenicity of vaccine candidates. In this review, we will summarize (i) the disease burden caused by EBV and the necessity of developing an EBV vaccine; (ii) previous EBV vaccine studies and available animal models; (iii) future trends of EBV vaccines, including activation of cellular immune responses, novel immunogen design, heterologous prime-boost approach, induction of mucosal immunity, application of nanoparticle delivery system, and modern adjuvant development.

Original languageEnglish (US)
Article number159
Journalnpj Vaccines
Volume7
Issue number1
DOIs
StatePublished - Dec 2022

All Science Journal Classification (ASJC) codes

  • Immunology
  • Pharmacology
  • Infectious Diseases
  • Pharmacology (medical)

Fingerprint

Dive into the research topics of 'Urgency and necessity of Epstein-Barr virus prophylactic vaccines'. Together they form a unique fingerprint.

Cite this