TY - JOUR
T1 - Upregulated bone morphogenetic protein 5 enhances proliferation and epithelial–mesenchymal transition process in benign prostatic hyperplasia via BMP/Smad signaling pathway
AU - Liu, Daoquan
AU - Liu, Jianmin
AU - Li, Yan
AU - Liu, Huan
AU - Hassan, Hassan M.
AU - He, Weixiang
AU - Li, Mingzhou
AU - Zhou, Yongying
AU - Fu, Xun
AU - Zhan, Junfeng
AU - Wang, Zhen
AU - Yang, Shu
AU - Chen, Ping
AU - Xu, Deqiang
AU - Wang, Xinhuan
AU - DiSanto, Michael E.
AU - Zeng, Guang
AU - Zhang, Xinhua
N1 - Publisher Copyright:
© 2021 Wiley Periodicals LLC
PY - 2021/12/1
Y1 - 2021/12/1
N2 - Background: Benign prostatic hyperplasia (BPH) is one of the most common illnesses in aging men. Recent studies found that bone morphogenetic protein 5 (BMP5) is upregulated in BPH tissues, however, the role of BMP5 in the development of BPH has not been examined. The current study aims to elucidate the potential roles of BMP5 and related signaling pathways in BPH. Methods: Human prostate cell lines (BPH-1, WPMY-1) and human/rat hyperplastic prostate tissues were utilized. Western blot, quantitative real-time polymerase chain reaction, immunofluorescent staining, and immunohistochemical staining were performed. BMP5-silenced and -overexpressed cell models were generated and then cell cycle progression, apoptosis, and proliferation were determined. The epithelial–mesenchymal transition (EMT) was also quantitated. And rescue experiments by BMP/Smad signaling pathway agonist or antagonist were accomplished. Moreover, BPH-related tissue microarray analysis was performed and associations between clinical parameters and expression of BMP5 were analyzed. Results: Our study demonstrated that BMP5 was upregulated in human and rat hyperplastic tissues and localized both in the epithelial and stromal compartments of the prostate tissues. E-cadherin was downregulated in hyperplastic tissues, while N-cadherin and vimentin were upregulated. Overexpression of BMP5 enhanced cell proliferation and the EMT process via phosphorylation of Smad1/5/8, while knockdown of BMP5 induced cell cycle arrest at G0/G1 phase and blocked the EMT process. Moreover, a BMP/Smad signaling pathway agonist and antagonist reversed the effects of BMP5 silencing and overexpression, respectively. In addition, BMP5 expression positively correlated with prostate volume and total prostate-specific antigen. Conclusion: Our novel data suggest that BMP5 modulated cell proliferation and the EMT process through the BMP/Smad signaling pathway which could contribute to the development of BPH. However, further studies are required to determine the exact mechanism. Our study also indicated that BMP/Smad signaling may be rediscovered as a promising new therapeutic target for the treatment of BPH.
AB - Background: Benign prostatic hyperplasia (BPH) is one of the most common illnesses in aging men. Recent studies found that bone morphogenetic protein 5 (BMP5) is upregulated in BPH tissues, however, the role of BMP5 in the development of BPH has not been examined. The current study aims to elucidate the potential roles of BMP5 and related signaling pathways in BPH. Methods: Human prostate cell lines (BPH-1, WPMY-1) and human/rat hyperplastic prostate tissues were utilized. Western blot, quantitative real-time polymerase chain reaction, immunofluorescent staining, and immunohistochemical staining were performed. BMP5-silenced and -overexpressed cell models were generated and then cell cycle progression, apoptosis, and proliferation were determined. The epithelial–mesenchymal transition (EMT) was also quantitated. And rescue experiments by BMP/Smad signaling pathway agonist or antagonist were accomplished. Moreover, BPH-related tissue microarray analysis was performed and associations between clinical parameters and expression of BMP5 were analyzed. Results: Our study demonstrated that BMP5 was upregulated in human and rat hyperplastic tissues and localized both in the epithelial and stromal compartments of the prostate tissues. E-cadherin was downregulated in hyperplastic tissues, while N-cadherin and vimentin were upregulated. Overexpression of BMP5 enhanced cell proliferation and the EMT process via phosphorylation of Smad1/5/8, while knockdown of BMP5 induced cell cycle arrest at G0/G1 phase and blocked the EMT process. Moreover, a BMP/Smad signaling pathway agonist and antagonist reversed the effects of BMP5 silencing and overexpression, respectively. In addition, BMP5 expression positively correlated with prostate volume and total prostate-specific antigen. Conclusion: Our novel data suggest that BMP5 modulated cell proliferation and the EMT process through the BMP/Smad signaling pathway which could contribute to the development of BPH. However, further studies are required to determine the exact mechanism. Our study also indicated that BMP/Smad signaling may be rediscovered as a promising new therapeutic target for the treatment of BPH.
UR - http://www.scopus.com/inward/record.url?scp=85115303261&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85115303261&partnerID=8YFLogxK
U2 - 10.1002/pros.24241
DO - 10.1002/pros.24241
M3 - Article
C2 - 34553788
AN - SCOPUS:85115303261
SN - 0270-4137
VL - 81
SP - 1435
EP - 1449
JO - Prostate
JF - Prostate
IS - 16
ER -