Translating dosage compensation to trisomy 21

Jun Jiang, Yuanchun Jing, Gregory J. Cost, Jen Chieh Chiang, Heather J. Kolpa, Allison M. Cotton, Dawn M. Carone, Benjamin R. Carone, David A. Shivak, Dmitry Y. Guschin, Jocelynn R. Pearl, Edward J. Rebar, Meg Byron, Philip D. Gregory, Carolyn J. Brown, Fyodor D. Urnov, Lisa L. Hall, Jeanne B. Lawrence

Research output: Contribution to journalArticlepeer-review

263 Scopus citations


Down's syndrome is a common disorder with enormous medical and social costs, caused by trisomy for chromosome 21. We tested the concept that gene imbalance across an extra chromosome can be de facto corrected by manipulating a single gene, XIST (the X-inactivation gene). Using genome editing with zinc finger nucleases, we inserted a large, inducible XIST transgene into the DYRK1A locus on chromosome 21, in Down's syndrome pluripotent stem cells. The XIST non-coding RNA coats chromosome 21 and triggers stable heterochromatin modifications, chromosome-wide transcriptional silencing and DNA methylation to form a 'chromosome 21 Barr body'. This provides a model to study human chromosome inactivation and creates a system to investigate genomic expression changes and cellular pathologies of trisomy 21, free from genetic and epigenetic noise. Notably, deficits in proliferation and neural rosette formation are rapidly reversed upon silencing one chromosome 21. Successful trisomy silencing in vitro also surmounts the major first step towards potential development of 'chromosome therapy'.

Original languageEnglish (US)
Pages (from-to)296-300
Number of pages5
Issue number7462
StatePublished - 2013
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Translating dosage compensation to trisomy 21'. Together they form a unique fingerprint.

Cite this