Transfer learning for cross-language text categorization through active correspondences construction

Joey Tianyi Zhou, Sinno Jialin Pan, Ivor W. Tsang, Shen Shyang Ho

Research output: Chapter in Book/Report/Conference proceedingConference contribution

41 Scopus citations

Abstract

Most existing heterogeneous transfer learning (HTL) methods for cross-language text classification rely on sufficient cross-domain instance correspondences to learn a mapping across heterogeneous feature spaces, and assume that such correspondences are given in advance. However, in practice, correspondences between domains are usually unknown. In this case, extensively manual efforts are required to establish accurate correspondences across multilingual documents based on their content and meta-information. In this paper, we present a general framework to integrate active learning to construct correspondences between heterogeneous domains for HTL, namely HTL through active correspondences construction (HTLA). Based on this framework, we develop a new HTL method. On top of the new HTL method, we further propose a strategy to actively construct correspondences between domains. Extensive experiments are conducted on various multilingual text classification tasks to verify the effectiveness of HTLA.

Original languageEnglish (US)
Title of host publication30th AAAI Conference on Artificial Intelligence, AAAI 2016
PublisherAAAI press
Pages2400-2406
Number of pages7
ISBN (Electronic)9781577357605
StatePublished - 2016
Externally publishedYes
Event30th AAAI Conference on Artificial Intelligence, AAAI 2016 - Phoenix, United States
Duration: Feb 12 2016Feb 17 2016

Publication series

Name30th AAAI Conference on Artificial Intelligence, AAAI 2016

Other

Other30th AAAI Conference on Artificial Intelligence, AAAI 2016
Country/TerritoryUnited States
CityPhoenix
Period2/12/162/17/16

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Transfer learning for cross-language text categorization through active correspondences construction'. Together they form a unique fingerprint.

Cite this