TY - GEN
T1 - Transfer learning for cross-language text categorization through active correspondences construction
AU - Zhou, Joey Tianyi
AU - Pan, Sinno Jialin
AU - Tsang, Ivor W.
AU - Ho, Shen Shyang
N1 - Publisher Copyright:
© Copyright 2016, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2016
Y1 - 2016
N2 - Most existing heterogeneous transfer learning (HTL) methods for cross-language text classification rely on sufficient cross-domain instance correspondences to learn a mapping across heterogeneous feature spaces, and assume that such correspondences are given in advance. However, in practice, correspondences between domains are usually unknown. In this case, extensively manual efforts are required to establish accurate correspondences across multilingual documents based on their content and meta-information. In this paper, we present a general framework to integrate active learning to construct correspondences between heterogeneous domains for HTL, namely HTL through active correspondences construction (HTLA). Based on this framework, we develop a new HTL method. On top of the new HTL method, we further propose a strategy to actively construct correspondences between domains. Extensive experiments are conducted on various multilingual text classification tasks to verify the effectiveness of HTLA.
AB - Most existing heterogeneous transfer learning (HTL) methods for cross-language text classification rely on sufficient cross-domain instance correspondences to learn a mapping across heterogeneous feature spaces, and assume that such correspondences are given in advance. However, in practice, correspondences between domains are usually unknown. In this case, extensively manual efforts are required to establish accurate correspondences across multilingual documents based on their content and meta-information. In this paper, we present a general framework to integrate active learning to construct correspondences between heterogeneous domains for HTL, namely HTL through active correspondences construction (HTLA). Based on this framework, we develop a new HTL method. On top of the new HTL method, we further propose a strategy to actively construct correspondences between domains. Extensive experiments are conducted on various multilingual text classification tasks to verify the effectiveness of HTLA.
UR - http://www.scopus.com/inward/record.url?scp=85007240000&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85007240000&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85007240000
T3 - 30th AAAI Conference on Artificial Intelligence, AAAI 2016
SP - 2400
EP - 2406
BT - 30th AAAI Conference on Artificial Intelligence, AAAI 2016
PB - AAAI press
T2 - 30th AAAI Conference on Artificial Intelligence, AAAI 2016
Y2 - 12 February 2016 through 17 February 2016
ER -