Toroidal plasma enhanced CVD of diamond films

John Zvanya, William Holber, Christopher Cullen, Thomas Morris, Andrew Basnett, Robert Basnett, Jeffrey Hettinger, Robert R. Krchnavek

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

An inductively coupled toroidal plasma source is used as an alternative to microwave plasmas for chemical vapor deposition of diamond films. The source, operating at a frequency of 400 kHz, synthesizes diamond films from a mixture of argon, methane, and hydrogen. The toroidal design has been adapted to create a highly efficient environment for diamond film deposition: high gas temperature and a short distance from the sample to the plasma core. Using a toroidal plasma geometry operating in the medium frequency band allows for efficient (90%) coupling of AC line power to the plasma and a scalable path to high-power and large-area operation. In test runs, the source generates a high flux of atomic hydrogen over a large area, which is favorable for diamond film growth. Using a deposition temperature of 900-1050°C and a source to sample distance of 0.1-2.0cm, diamond films are deposited onto silicon substrates. The results showed that the deposition rate of the diamond films could be controlled using the sample temperature and source to sample spacing. The results also show the films exhibit good-quality polycrystalline diamond as verified by Raman spectroscopy, x-ray diffraction, and scanning electron microscopy. The scanning electron microscopy and x-ray diffraction results show that the samples exhibit diamond (111) and diamond (022) crystallites. The Raman results show that the sp3 peak has a narrow spectral width (FWHM 12 ±0.5cm -1) and that negligible amounts of the sp2 band are present, indicating good-quality diamond films.

Original languageEnglish (US)
Article number050605
JournalJournal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
Volume32
Issue number5
DOIs
StatePublished - Sep 2014

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Toroidal plasma enhanced CVD of diamond films'. Together they form a unique fingerprint.

Cite this