TY - JOUR
T1 - The effect of resin-rich layers on mechanical properties of 3D printed woven fiber-reinforced composites
AU - Idrees, Mohanad
AU - Ibrahim, Ahmed M.H.
AU - Tekerek, Emine
AU - Kontsos, Antonios
AU - Palmese, Giuseppe R.
AU - Alvarez, Nicolas J.
N1 - Funding Information:
Research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-14-2-0227. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes not withstanding any copyright notation herein.
Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/5
Y1 - 2021/5
N2 - Composites for aerospace and automotive industries trend towards maximizing fiber volume fraction. In such applications, the design criteria typically maximize material stiffness with little concern for strength, and elongation at break. However, several fiber-composite applications would benefit from improved strength, and elongation at break. Given typical manufacturing constraints, limited success has been reported on maximizing composite properties imparted by the matrix, such as strength and toughness. Select studies have shown that inclusion of neat resin layer spacing between composite layers, referred to as resin-rich layers (RRL), lead to significant improvements in Mode II interlaminar toughness. Additive manufacturing offers a useful platform for manufacturing parts with controlled RRL and composite layer placement. In this study, we present a novel method for the fabrication of woven glass fiber reinforced composites with controlled RRLs using a 3D vat polymerization technique. We utilize a plain woven glass fiber mats and a novel methacrylated resin (DA-2) that allows for fiber mat incorporation during printing. The goal of this study is to determine the effects of RRL thickness on mechanical properties. Laminated composites are produced with controlled RRL thickness in the range of 0–200 µm. The printed laminates are tested for tensile, flexure, short beam shear, Mode I, and Mode II interlaminar properties. Overall, RRL does not show improved in-plane or out-of-plane performance for the chosen materials. However, the observed trends in interlaminar toughness are shown to strongly depend on the resin properties, namely the resin's plastic zone size. We conclude that the resin plastic zone size is a key resin property that determines whether improved toughness and strength are achieved with the presence of RRLs.
AB - Composites for aerospace and automotive industries trend towards maximizing fiber volume fraction. In such applications, the design criteria typically maximize material stiffness with little concern for strength, and elongation at break. However, several fiber-composite applications would benefit from improved strength, and elongation at break. Given typical manufacturing constraints, limited success has been reported on maximizing composite properties imparted by the matrix, such as strength and toughness. Select studies have shown that inclusion of neat resin layer spacing between composite layers, referred to as resin-rich layers (RRL), lead to significant improvements in Mode II interlaminar toughness. Additive manufacturing offers a useful platform for manufacturing parts with controlled RRL and composite layer placement. In this study, we present a novel method for the fabrication of woven glass fiber reinforced composites with controlled RRLs using a 3D vat polymerization technique. We utilize a plain woven glass fiber mats and a novel methacrylated resin (DA-2) that allows for fiber mat incorporation during printing. The goal of this study is to determine the effects of RRL thickness on mechanical properties. Laminated composites are produced with controlled RRL thickness in the range of 0–200 µm. The printed laminates are tested for tensile, flexure, short beam shear, Mode I, and Mode II interlaminar properties. Overall, RRL does not show improved in-plane or out-of-plane performance for the chosen materials. However, the observed trends in interlaminar toughness are shown to strongly depend on the resin properties, namely the resin's plastic zone size. We conclude that the resin plastic zone size is a key resin property that determines whether improved toughness and strength are achieved with the presence of RRLs.
UR - http://www.scopus.com/inward/record.url?scp=85101495042&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85101495042&partnerID=8YFLogxK
U2 - 10.1016/j.compositesa.2021.106339
DO - 10.1016/j.compositesa.2021.106339
M3 - Article
AN - SCOPUS:85101495042
SN - 1359-835X
VL - 144
JO - Composites - Part A: Applied Science and Manufacturing
JF - Composites - Part A: Applied Science and Manufacturing
M1 - 106339
ER -