Temporal evolution of parent volatiles and dust in Comet 9P/Tempel 1 resulting from the Deep Impact experiment

Michael A. DiSanti, Geronimo L. Villanueva, Boncho P. Bonev, Karen Magee-Sauer, James E. Lyke, Michael J. Mumma

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

The Deep Impact encounter with the Jupiter family Comet 9P/Tempel 1 on UT 2005 July 4 was observed at high spectral resolving power (λ / δ λ ∼ 25, 000) using the cross-dispersed near-infrared echelle spectrometer (NIRSPEC) at Keck-2. We report the temporal evolution of parent volatiles and dust (simultaneously measured) resulting from the event. Column abundances are presented for H2O and C2H6 beginning 30 min prior to impact (T - 30) and ending 50 min following impact (T + 50), and for H2O and HCN from T + 50 until T + 96, in time steps of approximately 6 min post-impact. The ejecta composition was revealed by an abrupt increase in H2O and C2H6 near T + 25. This showed C2H6/H2O to be higher than its pre-impact value by a factor 2.4 ± 0.5, while HCN/H2O was unchanged within the uncertainty of the measurements. The mixing ratios for C2H6 and HCN in the ejecta agree with those found in the majority of Oort cloud comets, perhaps indicating a common region of formation. The expanding dust plume was tracked by continuum measurements, both through the 3.5-μm spectral continuum and through 2-μm images acquired with the SCAM slit-viewing camera, and each showed a monotonic increase in continuum intensity following impact. A Monte Carlo model that included dust opacity was applied to the dust coma, and its parameters were constrained by observations; the simulated continuum intensities reproduced both spectral and SCAM data. The relatively sudden appearance of the volatile ejecta signature is attributed to heating of icy grains (perhaps to a threshold temperature) that are decreasingly shadowed by intervening (sunward) dust particles in an optically thick ejecta plume, perhaps coupled with an accelerated decrease in dust optical depth near T + 25.

Original languageEnglish (US)
Pages (from-to)240-252
Number of pages13
JournalIcarus
Volume187
Issue number1
DOIs
StatePublished - Mar 2007

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Temporal evolution of parent volatiles and dust in Comet 9P/Tempel 1 resulting from the Deep Impact experiment'. Together they form a unique fingerprint.

Cite this