Tailored Nucleic Acid Architectures at Gold Surfaces for Controlled Therapeutic Release

Robert J. Mosley, Julia Hart, Kadie L. Davis, Jacek Wower, Mark E. Byrne

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


Nucleic acids are versatile materials capable of forming smart nanocarriers with highly controllable therapeutic delivery. DNA-gated release is a mechanism by which DNA oligonucleotides physically block the release of encapsulated drugs from porous nanoparticles. We extend this mechanism to be used with drugs bound to the surface of DNA-capped gold nanoparticles (AuNPs). We investigated DNA monolayers of different thicknesses and hybridization states to determine how DNA surface architecture can affect the release of a template drug bound to the gold surface. DNA layers are investigated on the planar gold surface via quartz crystal microbalance with dissipation and on AuNPs via dynamic light scattering. The resultant layer architectures were studied for their effect on the release rate of drugs. We observed that varying DNA architectures on AuNPs result in different release rates of the drug. The rate of drug release can be slowed using either folded or randomly coiled DNA sequences, which act as a physical barrier to diffusion. DNA monolayers with upright orientation release drugs more quickly. When the longer single-stranded DNA is used, the drug release is slowed even further. However, even upright DNA layers provide a barrier to drug diffusion at longer sequence lengths. We hypothesize that it is the architecture of the DNA layer, influenced by the folded or upright orientation of individual DNA molecules, that affects the free diffusion of the drug away from the AuNP surface. This mechanism may improve the biological availability of many surface-bound drugs on solid, DNA-capped nanoparticles.

Original languageEnglish (US)
Pages (from-to)1698-1704
Number of pages7
Issue number5
StatePublished - Feb 8 2022
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry


Dive into the research topics of 'Tailored Nucleic Acid Architectures at Gold Surfaces for Controlled Therapeutic Release'. Together they form a unique fingerprint.

Cite this