Surface Drift Predictions of the Deepwater Horizon Spill: The Lagrangian Perspective

Helga S. Huntley, B. L. Lipphardt, A. D. Kirwan

Research output: Chapter in Book/Report/Conference proceedingChapter

28 Scopus citations

Abstract

Forecasting the movement of the oil after a massive spill like that from the Deepwater Horizon drilling platform in the Gulf of Mexico is critical for pollution containment and mitigation. Assessing such forecasts a posteriori is also relevant for future drilling risk assessments. This study considers surface drift simulations based on a regional circulation model. Initialization and assessment is performed with two distinct satellite-derived observational products. Two metrics are introduced for measuring forecast success: percent of the predicted spill area contained in the observation and percent of the observed spill area contained in the forecast. Simple passive tracer advection for 2-5 days yields about 30%-75% of the forecast in the observation. The second metric scores around 30% for almost all cases studied. The unquantified continuing leakage of oil from the ruptured well is modeled at two rates. At the lower rate, it has barely any effect on the forecast, while the higher rate leads to a doubling or greater of the captured observation (second metric), accompanied by a significantly smaller deterioration in the first metric. The role of wind is also explored and found to be negligible away from the coastal areas. Lagrangian coherent structures, in the form of direct Lyapunov exponents and mesohyperbolicity, are tested for their ability to describe the oil advection characteristics without the sensitivity to observational errors in the initialization and without the details that are most error-prone. They are found to have some skill in capturing the deformation patterns exhibited by the observed oil slick.

Original languageEnglish (US)
Title of host publicationMonitoring and Modeling the Deepwater Horizon Oil Spill
Subtitle of host publicationA Record Breaking Enterprise
Publisherwiley
Pages179-195
Number of pages17
ISBN (Electronic)9781118666753
ISBN (Print)9780875904856
DOIs
StatePublished - Mar 21 2013
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Surface Drift Predictions of the Deepwater Horizon Spill: The Lagrangian Perspective'. Together they form a unique fingerprint.

Cite this