TY - GEN
T1 - Study of energy harvesting performance of wet-stretched PVDF nanofibers
AU - Najjar, Raghid
AU - Luo, Yi
AU - Hu, Xiao
AU - Beachley, Vince
AU - Xue, Wei
N1 - Publisher Copyright:
Copyright © 2016 by ASME.
PY - 2016
Y1 - 2016
N2 - An average human body produces a large amount of energy throughout the day. A significant portion of this energy is utilized as mechanical energy. Body movement such as footfalls and arm swings can produce enough energy to power portable electronics using mechanical-to-electrical energy harvesters. These devices should be small, light, portable, and flexible. Polyvinylidene fluoride (PVDF) has shown a high biocompatibility and is a suitable candidate for energy harvesting applications. Moreover, PVDF can be produced in large quantities while still maintaining a low cost. Electrospinning is a common process used to prepare PVDF nanofibers. Here we introduce a novel technique called wet-stretched electrospinning to further increase the amount of energy generated by the PVDF devices. Our initial results show that the wet-stretched nanofibers outperform the regular PVDF nanofibers by up to 12 times under similar conditions. These promising results suggest that the proposed method has great potential to be utilized as a major improvement from the traditional electrospinning process of PVDF. These findings are significant and are especially pertinent to the field of energy harvesters designed for powering medical devices or wearable systems.
AB - An average human body produces a large amount of energy throughout the day. A significant portion of this energy is utilized as mechanical energy. Body movement such as footfalls and arm swings can produce enough energy to power portable electronics using mechanical-to-electrical energy harvesters. These devices should be small, light, portable, and flexible. Polyvinylidene fluoride (PVDF) has shown a high biocompatibility and is a suitable candidate for energy harvesting applications. Moreover, PVDF can be produced in large quantities while still maintaining a low cost. Electrospinning is a common process used to prepare PVDF nanofibers. Here we introduce a novel technique called wet-stretched electrospinning to further increase the amount of energy generated by the PVDF devices. Our initial results show that the wet-stretched nanofibers outperform the regular PVDF nanofibers by up to 12 times under similar conditions. These promising results suggest that the proposed method has great potential to be utilized as a major improvement from the traditional electrospinning process of PVDF. These findings are significant and are especially pertinent to the field of energy harvesters designed for powering medical devices or wearable systems.
UR - http://www.scopus.com/inward/record.url?scp=85022079545&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85022079545&partnerID=8YFLogxK
U2 - 10.1115/IMECE201666642
DO - 10.1115/IMECE201666642
M3 - Conference contribution
AN - SCOPUS:85022079545
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Energy
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016
Y2 - 11 November 2016 through 17 November 2016
ER -