Studies of the dimensional effects of su-8 and PDMS pillar arrays on hydrophobicity

Jiheng Zhao, Jianlong Gao, Xinmiao Chen, Liping Liu, Wei Xue

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The creation of hydrophobic and superhydrophobic surfaces has attracted tremendous attention in the past decade. Such surfaces provide unique and highly useful properties that are suitable for a wide range of applications. In this paper, we report our findings on the dimensional effects of SU-8 and polydimethylsiloxane (PDMS) pillar arrays on surface hydrophobicity. Pillar arrays with various dimensions are designed and fabricated on SU-8 and PDMS surfaces using optical lithography and soft lithography. The water droplet contact angles on these features are obtained with a goniometer to demonstrate how the related dimensions, including the diameter of each pillar and the distance between two pillars, affect the surface hydrophobicity. Theoretical analyses are also carried out to estimate the contact angles of water droplets based on Cassie and Wenzel models. The experimental and analytical results are presented and compared in this paper. The results demonstrate that the dimensional change of a pillar array has a direct impact on its surface hydrophobicity. The highest contact angle can only be achieved using optimum designs. Furthermore, there are clear differences in our measurement results between the SU-8 and PDMS pillar arrays. We believe that these differences come from the inherent hydrophobicity difference of the two polymers. Without further coatings or treatment steps, SU-8 pillar arrays can achieve contact angles up to 140° while the PDMS structures can achieve higher contact angles up to 170°. Last, the PDMS pillar arrays demonstrate a transition phase from the Cassie state to the Wenzel state during the wetting experiments.

Original languageEnglish (US)
Title of host publicationMicro- and Nano-Systems Engineering and Packaging
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791856390
DOIs
StatePublished - Jan 1 2013
EventASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013 - San Diego, CA, United States
Duration: Nov 15 2013Nov 21 2013

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume10

Other

OtherASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013
CountryUnited States
CitySan Diego, CA
Period11/15/1311/21/13

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Studies of the dimensional effects of su-8 and PDMS pillar arrays on hydrophobicity'. Together they form a unique fingerprint.

Cite this