Structure and biodegradation mechanism of milled Bombyx mori silk particles

Rangam Rajkhowa, Xiao Hu, Takuya Tsuzuki, David L. Kaplan, Xungai Wang

Research output: Contribution to journalArticlepeer-review

63 Scopus citations


The aim of this study was to understand the structure and biodegradation relationships of silk particles intended for targeted biomedical applications. Such a study is also useful in understanding structural remodelling of silk debris that may be generated from silk-based implants. Ultrafine silk particles were prepared using a combination of efficient wet-milling and spray-drying processes with no addition of chemicals other than those used in degumming. Milling reduced the intermolecular stacking forces within the β-sheet crystallites without changing the intramolecular binding energy. Because of the rough morphology and the ultrafine size of the particles, degradation of silk particles by protease XIV was increased by about 3-fold compared to silk fibers. Upon biodegradation, the thermal degradation temperature of silk increased, which was attributed to the formation of tight aggregates by the hydrolyzed residual macromolecules. A model of the biodegradation mechanism of silk particles was developed based on the experimental data. The model explains the process of disintegration of β-sheets, supported by quantitative secondary structural analysis and microscopic images.

Original languageEnglish (US)
Pages (from-to)2503-2512
Number of pages10
Issue number8
StatePublished - Aug 13 2012
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Biomaterials
  • Polymers and Plastics
  • Materials Chemistry


Dive into the research topics of 'Structure and biodegradation mechanism of milled Bombyx mori silk particles'. Together they form a unique fingerprint.

Cite this