Silk-cellulose acetate biocomposite materials regenerated from ionic liquid

Ashley Rivera-Galletti, Christopher R. Gough, Farhan Kaleem, Michael Burch, Chris Ratcliffe, Ping Lu, David Salas-De la Cruz, Xiao Hu

Research output: Contribution to journalArticlepeer-review

Abstract

The novel use of ionic liquid as a solvent for biodegradable and natural organic biomateri-als has increasingly sparked interest in the biomedical field. As compared to more volatile traditional solvents that rapidly degrade the protein molecular weight, the capability of polysaccharides and proteins to dissolve seamlessly in ionic liquid and form fine and tunable biomaterials after regeneration is the key interest of this study. Here, a blended system consisting of Bombyx Mori silk fibroin protein and a cellulose derivative, cellulose acetate (CA), in the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIMAc) was regenerated and underwent characterization to understand the structure and physical properties of the films. The change in the morphology of the biocomposites (by scanning electron microscope, SEM) and their secondary structure analysis (by Fourier-transform infrared spectroscopy, FTIR) showed that the samples underwent a wavering conformational change on a microscopic level, resulting in strong interactions and changes in their crystalline structures such as the CA crystalline and silk beta-pleated sheets once the different ratios were applied. Differential scanning calorimetry (DSC) results demonstrated that strong molecular interactions were generated between CA and silk chains, providing the blended films lower glass transitions than those of the pure silk or cellulose acetate. All films that were blended had higher thermal stability than the pure cellulose acetate sample but presented gradual changes amongst the changing of ratios, as demonstrated by thermogravimetric analysis (TGA). This study provides the basis for the comprehension of the protein-polysaccharide composites for various biomedical applications.

Original languageEnglish (US)
Article number2911
JournalPolymers
Volume13
Issue number17
DOIs
StatePublished - Sep 1 2021

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Polymers and Plastics

Fingerprint

Dive into the research topics of 'Silk-cellulose acetate biocomposite materials regenerated from ionic liquid'. Together they form a unique fingerprint.

Cite this