Shoe-floor interactions during human slip and fall: Modeling and experiments

Mitja Trkov, Jingang Yi, Tao Liu, Kang Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Scopus citations


Shoe-floor interactions such as friction force and deformation/local slip distributions are among the critical factors to determine the risk for potential slip and fall. In this paper, we present modeling, analysis, and experiments to understand the slip and force distributions between the shoe sole and floor surface during the normal gait and the slip and fall gait. The computational results for the slip and friction force distribution are based on the spring-beam networks model. The experiments are conducted with several new sensing techniques. The in-situ contour footprint is accurately measured by a set of laser line generators and image processing algorithms. The force distributions are obtained by combining two types of force sensor measurements: implanted conductive rubber-based force sensor arrays in the shoe sole and six degree-of-freedom (6-DOF) insole force/torque sensors. We demonstrate the sensing system development through extensive experiments. Finally, the new sensing system and modeling framework confirm that the use of required coefficient of friction and the deformation measurements can real-time predict the slip occurrence.

Original languageEnglish (US)
Title of host publicationActive Control of Aerospace Structure; Motion Control; Aerospace Control; Assistive Robotic Systems; Bio-Inspired Systems; Biomedical/Bioengineering Applications; Building Energy Systems; Condition Based Monitoring; Control Design for Drilling Automation; Control of Ground Vehicles, Manipulators, Mechatronic Systems; Controls for Manufacturing; Distributed Control; Dynamic Modeling for Vehicle Systems; Dynamics and Control of Mobile and Locomotion Robots; Electrochemical Energy Systems
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791846186
StatePublished - 2014
Externally publishedYes
EventASME 2014 Dynamic Systems and Control Conference, DSCC 2014 - San Antonio, United States
Duration: Oct 22 2014Oct 24 2014

Publication series

NameASME 2014 Dynamic Systems and Control Conference, DSCC 2014


ConferenceASME 2014 Dynamic Systems and Control Conference, DSCC 2014
Country/TerritoryUnited States
CitySan Antonio

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering


Dive into the research topics of 'Shoe-floor interactions during human slip and fall: Modeling and experiments'. Together they form a unique fingerprint.

Cite this