Revealing Adverse Outcome Pathways from Public High-Throughput Screening Data to Evaluate New Toxicants by a Knowledge-Based Deep Neural Network Approach

Heather L. Ciallella, Daniel P. Russo, Lauren M. Aleksunes, Fabian A. Grimm, Hao Zhu

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Traditional experimental testing to identify endocrine disruptors that enhance estrogenic signaling relies on expensive and labor-intensive experiments. We sought to design a knowledge-based deep neural network (k-DNN) approach to reveal and organize public high-throughput screening data for compounds with nuclear estrogen receptor α and β (ERα and ERβ) binding potentials. The target activity was rodent uterotrophic bioactivity driven by ERα/ERβ activations. After training, the resultant network successfully inferred critical relationships among ERα/ERβ target bioassays, shown as weights of 6521 edges between 1071 neurons. The resultant network uses an adverse outcome pathway (AOP) framework to mimic the signaling pathway initiated by ERα and identify compounds that mimic endogenous estrogens (i.e., estrogen mimetics). The k-DNN can predict estrogen mimetics by activating neurons representing several events in the ERα/ERβ signaling pathway. Therefore, this virtual pathway model, starting from a compound's chemistry initiating ERα activation and ending with rodent uterotrophic bioactivity, can efficiently and accurately prioritize new estrogen mimetics (AUC = 0.864-0.927). This k-DNN method is a potential universal computational toxicology strategy to utilize public high-throughput screening data to characterize hazards and prioritize potentially toxic compounds.

Original languageEnglish (US)
Pages (from-to)10875-10887
Number of pages13
JournalEnvironmental Science and Technology
Volume55
Issue number15
DOIs
StatePublished - Aug 3 2021
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Environmental Chemistry

Fingerprint

Dive into the research topics of 'Revealing Adverse Outcome Pathways from Public High-Throughput Screening Data to Evaluate New Toxicants by a Knowledge-Based Deep Neural Network Approach'. Together they form a unique fingerprint.

Cite this