Remaining Opportunities in Capacitive Power Transfer Based on Duality With Inductive Power Transfer

Yao Wang, Hua Zhang, Yue Cao, Fei Lu

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


Wireless power transfer (WPT) has proven to be an effective solution for electric vehicle charging. As two mainstream near-field WPT technologies, inductive and capacitive power transfer (IPT and CPT) have many similarities. This article aims to explore the remaining opportunities in CPT systems, not yet reported in existing literature, based on duality with the mature IPT technology. First, a generic modeling method based on two-port network theory is proposed, which contributes to unified modeling and analysis for both inductive and capacitive couplings. Then, power transfer mechanism of IPT and CPT couplers is compared, and unified transfer efficiency is derived, promoting CPT theory developments. Last, the duality between existing IPT and CPT circuits is demonstrated in two aspects: compensation circuit configuration and resonant relationship. The 14 CPT topologies are derived based on duality with the existing seven mainstream IPT circuits, of which 11 circuits do not exist in literature, offering future opportunities in CPT. Detailed comparison and evaluation of the derived 14 CPT circuits are conducted, and high-performance circuits are recommended. As a demonstration, a case study of a 2.1-kW, 3-MHz CPT system is implemented in hardware based on the newly proposed $M_{1}$ -SS topology. This example system achieves a peak efficiency of 93.19% with the predicted circuit properties of load-independent constant-voltage (CV) output and zero-phase-angle (ZPA) property.

Original languageEnglish (US)
Pages (from-to)2902-2915
Number of pages14
JournalIEEE Transactions on Transportation Electrification
Issue number2
StatePublished - Jun 1 2023
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Automotive Engineering
  • Transportation
  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering


Dive into the research topics of 'Remaining Opportunities in Capacitive Power Transfer Based on Duality With Inductive Power Transfer'. Together they form a unique fingerprint.

Cite this