Recombination and transcription of the endogenous Ig heavy chain locus is effected by the Ig heavy chain intronic enhancer core region in the absence of the matrix attachment regions

Eiko Sakai, Andrea Bottaro, Laurie Davidson, Barry P. Sleckman, Frederick W. Alt

Research output: Contribution to journalArticlepeer-review

80 Scopus citations

Abstract

The intronic Ig heavy chain (IgH) enhancer, which consists of the core enhancer flanked by 5' and 3' matrix attachment regions, has been implicated in control of IgH locus recombination and transcription. To elucidate the regulatory functions of the core enhancer and its associated matrix attachment regions in the endogenous IgH locus, we have introduced targeted deletions of these elements, both individually and in combination, into an IgH(a/b)-heterozygous embryonic stem cell line. These embryonic stem cells were used to generate chimeric mice by recombination activating gene-2 (Rag- 2)-deficient blastocyst complementation, and the effects of the introduced mutations were assayed in mutant B cells. We find that the core enhancer is necessary and sufficient to promote normal variable (V), diversity (D), and joining (J) segment recombination in developing B lineage cells and IgH locus transcription in mature B cells. Surprisingly, the 5' and 3' matrix attachment regions were dispensable for these processes.

Original languageEnglish (US)
Pages (from-to)1526-1531
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume96
Issue number4
DOIs
StatePublished - Feb 16 1999

All Science Journal Classification (ASJC) codes

  • General

Fingerprint Dive into the research topics of 'Recombination and transcription of the endogenous Ig heavy chain locus is effected by the Ig heavy chain intronic enhancer core region in the absence of the matrix attachment regions'. Together they form a unique fingerprint.

Cite this