Recent Advances in Antimicrobial Peptide Hydrogels

Aryanna Copling, Maxwell Akantibila, Raaha Kumaresan, Gilbert Fleischer, Dennise Cortes, Rahul S. Tripathi, Valerie J. Carabetta, Sebastián L. Vega

Research output: Contribution to journalReview articlepeer-review

17 Scopus citations

Abstract

Advances in the number and type of available biomaterials have improved medical devices such as catheters, stents, pacemakers, prosthetic joints, and orthopedic devices. The introduction of a foreign material into the body comes with a risk of microbial colonization and subsequent infection. Infections of surgically implanted devices often lead to device failure, which leads to increased patient morbidity and mortality. The overuse and improper use of antimicrobials has led to an alarming rise and spread of drug-resistant infections. To overcome the problem of drug-resistant infections, novel antimicrobial biomaterials are increasingly being researched and developed. Hydrogels are a class of 3D biomaterials consisting of a hydrated polymer network with tunable functionality. As hydrogels are customizable, many different antimicrobial agents, such as inorganic molecules, metals, and antibiotics have been incorporated or tethered to them. Due to the increased prevalence of antibiotic resistance, antimicrobial peptides (AMPs) are being increasingly explored as alternative agents. AMP-tethered hydrogels are being increasingly examined for antimicrobial properties and practical applications, such as wound-healing. Here, we provide a recent update, from the last 5 years of innovations and discoveries made in the development of photopolymerizable, self-assembling, and AMP-releasing hydrogels.

Original languageEnglish (US)
Article number7563
JournalInternational Journal of Molecular Sciences
Volume24
Issue number8
DOIs
StatePublished - Apr 2023

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Recent Advances in Antimicrobial Peptide Hydrogels'. Together they form a unique fingerprint.

Cite this