Pifithrin-α attenuates p53-mediated apoptosis and improves cardiac function in response to myocardial ischemia/reperfusion in aged rats

Peitan Liu, Baohuan Xu, Thomas Cavalieri, Carl E. Hock

Research output: Contribution to journalArticle

35 Scopus citations


Ischemic cardiovascular disease is a common age-related disease. The p53-dependent cardiac myocyte apoptosis induced by myocardial ischemia/reperfusion (MI/R) is an important feature in the progression of ischemic heart disease. In the present studies, we hypothesized that inhibition of p53-dependent myocyte apoptosis may improve cardiac dysfunction in aged rats after MI/R. A dose (2.2 mg/kg, i.p.) of pifithrin-α (PFT), a p53 inhibitor, or saline was administered to 20-month-old male F344 rats, which were subjected to 30 min of myocardial ischemia by ligating the left main coronary artery, followed by release of the ligature and 4 h of reperfusion. Results of our experiments indicate that MI/R induced a significant decrease in cardiac output index (CI) and mean arterial blood pressure (MABP). Administration of PFT to aged rats 40 min before ischemia significantly improved CI and MABP during 3 to 4 h of reperfusion. The improvement of cardiac function was associated with a marked reduction in DNA fragmentation in the area at risk of the heart when compared with aged MI/R rats pretreated with saline. Interestingly, treatment with PFT 10 min after ischemia or 10 min after reperfusion had a similar protective effect on CI and MABP, but this effect did not reach statistical significance when compared with aged MI/R rats pretreated with saline. Treatment with PFT, however, did not influence plasma creatine kinase activity and the number of circulating leukocytes and infiltrated leukocytes in the area at risk of the heart. Moreover, results of Western blot show that pretreatment with PFT significantly attenuated the ratio of Bax to Bcl-2 in the area-at-risk tissue of the heart compared with that of rats pretreated with saline. Our results suggest that pretreatment with PFT significantly improved cardiac function. The mechanism of protective effect of PFT may involve the inhibition of p53 transcriptional function, thereby attenuating the p53/Bax-mediated myocyte apoptosis during the reperfusion period.

Original languageEnglish (US)
Pages (from-to)608-614
Number of pages7
Issue number6
StatePublished - Dec 1 2006


All Science Journal Classification (ASJC) codes

  • Emergency Medicine
  • Critical Care and Intensive Care Medicine

Cite this