Piecing together the puzzle: Nanopore technology in detection and quantification of cancer biomarkers

Trang Vu, Shanna Leigh Davidson, Julia Borgesi, Mowla Maksudul, Tae Joon Jeon, Jiwook Shim

Research output: Contribution to journalReview articlepeer-review

9 Scopus citations


Cancer is the result of a multistep process, including various genetic and epigenetic alterations, such as structural variants, transcriptional factors, telomere length, DNA methylation, histone-DNA modification, and aberrant expression of miRNAs. These changes cause gene defects in one of two ways: (1) gain in function which shows enhanced expression or activation of oncogenes, or (2) loss of function which shows repression or inactivation of tumor-suppressor genes. However, most conventional methods for screening and diagnosing cancers require highly trained experts, intensive labor, large counter space (footprint) and extensive capital costs. Consequently, current approaches for cancer detection are still considered highly novel and are not yet practically applicable for clinical usage. Nanopore-based technology has grown rapidly in recent years, which have seen the wide application of biosensing research to a number of life sciences. In this review paper, we present a comprehensive outline of various genetic and epigenetic causal factors of cancer at the molecular level, as well as the use of nanopore technology in the detection and study of those specific factors. With the ability to detect both genetic and epigenetic alterations, nanopore technology would offer a cost-efficient, labor-free and highly practical approach to diagnosing pre-cancerous stages and early-staged tumors in both clinical and laboratory settings.

Original languageEnglish (US)
Pages (from-to)42653-42666
Number of pages14
JournalRSC Advances
Issue number68
StatePublished - 2017

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)


Dive into the research topics of 'Piecing together the puzzle: Nanopore technology in detection and quantification of cancer biomarkers'. Together they form a unique fingerprint.

Cite this