Pharmacokinetic and behavioral characterization of a long-term antipsychotic delivery system in rodents and rabbits

Kayla L. Metzger, Jody M. Shoemaker, Jonathan B. Kahn, Christina R. Maxwell, Yuling Liang, Jan Tokarczyk, Stephen J. Kanes, Meredith Hans, Anthony M. Lowman, Nily Dan, Karen I. Winey, Neal R. Swerdlow, Steven J. Siegel

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Rationale: Non-adherence with medication remains the major correctable cause of poor outcome in schizophrenia. However, few treatments have addressed this major determinant of outcome with novel long-term delivery systems. Objectives: The aim of this study was to provide biological proof of concept for a long-term implantable antipsychotic delivery system in rodents and rabbits. Materials and methods: Implantable formulations of haloperidol were created using biodegradable polymers. Implants were characterized for in vitro release and in vivo behavior using prepulse inhibition of startle in rats and mice, as well as pharmacokinetics in rabbits. Results: Behavioral measures demonstrate the effectiveness of haloperidol implants delivering 1 mg/kg in mice and 0.6 mg/kg in rats to block amphetamine (10 mg/kg) in mice or apomorphine (0.5 mg/kg) in rats. Additionally, we demonstrate the pattern of release from single polymer implants for 1 year in rabbits. Conclusions: The current study suggests that implantable formulations are a viable approach to providing long-term delivery of antipsychotic medications in vivo using animal models of behavior and pharmacokinetics. In contrast to depot formulations, implantable formulations could last 6 months or longer. Additionally, implants can be removed throughout the delivery interval, offering a degree of reversibility not available with depot formulations.

Original languageEnglish (US)
Pages (from-to)201-211
Number of pages11
JournalPsychopharmacology
Volume190
Issue number2
DOIs
StatePublished - Feb 2007
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Pharmacology

Fingerprint

Dive into the research topics of 'Pharmacokinetic and behavioral characterization of a long-term antipsychotic delivery system in rodents and rabbits'. Together they form a unique fingerprint.

Cite this