TY - JOUR
T1 - Persistent stress-induced neuroplastic changes in the locus coeruleus/norepinephrine system
AU - Borodovitsyna, Olga
AU - Joshi, Neal
AU - Chandler, Daniel
N1 - Publisher Copyright:
© 2018 Olga Borodovitsyna et al.
PY - 2018
Y1 - 2018
N2 - Neural plasticity plays a critical role in mediating short-and long-term brain responses to environmental stimuli. A major effector of plasticity throughout many regions of the brain is stress. Activation of the locus coeruleus (LC) is a critical step in mediating the neuroendocrine and behavioral limbs of the stress response. During stressor exposure, activation of the hypothalamic-pituitaryadrenal axis promotes release of corticotropin-releasing factor in LC, where its signaling promotes a number of physiological and cellular changes. While the acute effects of stress on LC physiology have been described, its long-term effects are less clear. This review will describe how stress changes LC neuronal physiology, function, and morphology from a genetic, cellular, and neuronal circuitry/transmission perspective. Specifically, we describe morphological changes of LC neurons in response to stressful stimuli and signal transduction pathways underlying them. Also, we will review changes in excitatory glutamatergic synaptic transmission in LC neurons and possible stress-induced modifications of AMPA receptors. This review will also address stress-related behavioral adaptations and specific noradrenergic receptors responsible for them. Finally, we summarize the results of several human studies which suggest a link between stress, altered LC function, and pathogenesis of posttraumatic stress disorder.
AB - Neural plasticity plays a critical role in mediating short-and long-term brain responses to environmental stimuli. A major effector of plasticity throughout many regions of the brain is stress. Activation of the locus coeruleus (LC) is a critical step in mediating the neuroendocrine and behavioral limbs of the stress response. During stressor exposure, activation of the hypothalamic-pituitaryadrenal axis promotes release of corticotropin-releasing factor in LC, where its signaling promotes a number of physiological and cellular changes. While the acute effects of stress on LC physiology have been described, its long-term effects are less clear. This review will describe how stress changes LC neuronal physiology, function, and morphology from a genetic, cellular, and neuronal circuitry/transmission perspective. Specifically, we describe morphological changes of LC neurons in response to stressful stimuli and signal transduction pathways underlying them. Also, we will review changes in excitatory glutamatergic synaptic transmission in LC neurons and possible stress-induced modifications of AMPA receptors. This review will also address stress-related behavioral adaptations and specific noradrenergic receptors responsible for them. Finally, we summarize the results of several human studies which suggest a link between stress, altered LC function, and pathogenesis of posttraumatic stress disorder.
UR - http://www.scopus.com/inward/record.url?scp=85053051522&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85053051522&partnerID=8YFLogxK
U2 - 10.1155/2018/1892570
DO - 10.1155/2018/1892570
M3 - Review article
C2 - 30008741
AN - SCOPUS:85053051522
SN - 2090-5904
VL - 2018
JO - Neural Plasticity
JF - Neural Plasticity
M1 - 1892570
ER -