Abstract
Biohybrid platforms such as synthetic polymer networks engineered from artificial and natural materials hold immense potential as drug and gene delivery vehicles. Here, we report the synthesis and characterization of novel polymer networks that release oligonucleotide sequences via enzymatic and physical triggers. Chemical monomers and acrylated oligonucleotides were copolymerized into networks, and phosphoimaging revealed that 70% of the oligonucleotides were incorporated into the networks. We observed that the immobilized oligonucleotides were readily cleaved when the networks were incubated with the type II restriction enzyme BamHI. The diffusion of the cleaved fragments through the macromolecular chains resulted in relatively constant release profiles very close to zero-order. To our knowledge, this is the first study which harnesses the sequence-specificity of restriction endonucleases as triggering agents for the cleavage and release of oligonucleotide sequences from a synthetic polymer network. The polymer networks exhibited an oligonucleotide diffusion coefficient of 5.6 × 10 -8 cm2/s and a diffusional exponent of 0.92. Sigmoidal temperature responsive characteristics of the networks matched the theoretical melting temperature of the oligonucleotides and indicated a cooperative melting transition of the oligonucleotides. The networks were also triggered to release a RNA-cleaving deoxyribozyme, which degraded a HIV-1 mRNA transcript in vitro. To tailor release profiles of the oligonucleotides, we controlled the structure of the macromolecular architecture of the networks by varying their cross-linking content. When incubated with DNase I, networks of cross-linking content 0.15%, 0.22%, and 0.45% exhibited oligonucleotide diffusion coefficients of 1.67 × 10-8, 7.65 × 10-9, and 2.7 × 10-9 cm2/s, and diffusional exponents of 0.55, 0.8, and 0.8, respectively. The modular nature of our platform promises to open new avenues for the creation and optimization of a rich toolbox of novel drug and gene delivery platforms. We anticipate further inquiry into nucleic acid based programmable on-demand switches and modulatory devices of exquisite sensitivity and control.
Original language | English (US) |
---|---|
Pages (from-to) | 1773-1782 |
Number of pages | 10 |
Journal | Bioconjugate Chemistry |
Volume | 20 |
Issue number | 9 |
DOIs | |
State | Published - Sep 16 2009 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Biotechnology
- Bioengineering
- Biomedical Engineering
- Pharmacology
- Pharmaceutical Science
- Organic Chemistry