Novel treatment strategy of targeting epigenetic dysregulation in pancreatic neuroendocrine tumors

Clara Zhu, Georgianna Sandilos, John Williamson, Robert Emery, Rebecca Platoff, Upasana Joneja, Nimish K. Acharya, Andrew Lin, Jeremy Badach, Brian Zilberman, Jozef Madzo, Jaroslav Jelinek, Ping Zhang, Young Ki Hong

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


Background: Epigenetic dysregulation is an integral step in the progression of pancreatic neuroendocrine tumors. We hypothesized that tumor suppressor repression by DNA methyltransferase 1 in pancreatic neuroendocrine tumors could be targeted with epigenetic treatment. Methods: Resected pancreatic neuroendocrine tumors from 32 patients were stained for DNA methyltransferase 1 and scored. Human (BON1) and murine (STC) pancreatic neuroendocrine tumor cells were treated with DNA methyltransferase 1 inhibitor 5-azacytidine and chemotherapeutic agents 5-fluorouracil and temozolomide. Cell proliferation assay and tumor suppressor gene analysis were performed with qRT-PCR and Clarion S microarray. Tumor measurements were compared in a murine treatment model. Results: High DNA methyltransferase scores were associated with high Ki-67 (6.7% vs 70.6% P < .01), mitotic rate (0.0% vs 31.3%), and grade (20.0% vs 80.4%, P < .01). Treatment with 5-azacytidine and chemotherapy resulted in a reduction of cell proliferation compared to chemotherapy alone in BON1 (77.3% vs 53.1%, P < .001) and STC (73.4% vs 34.2%, P < .001). Treatment with 5-azacytidine and chemotherapy resulted in upregulation of tumor suppressors CDKN1A (7.6 rel. fold, P < .001), BRCA2 (4.3 rel. fold, P < .001), and CDH1 (6.0 rel. fold, P = .026) in BON1 and CDKN1a (14.5 rel. fold, P < .001) and CDH (17.5 rel. fold, P < .001) in STC. In microarray, 5-azacytidine drove global genetic changes in combination treatment. In vivo tumors treated with chemotherapy measured 88.6 ± 19.54 mm3 vs 52.89 ± 10.51 mm3 in those treated with combination therapy (P = .009). Conclusion: Epigenetic dysregulation with DNA methyltransferase 1 is associated with pancreatic neuroendocrine tumors and is a potential targetable strategy. 5-azacytidine and chemotherapy in combination can reduce cell proliferation, upregulate silenced tumor suppressor genes, and decrease in vivo tumors in pancreatic neuroendocrine tumors.

Original languageEnglish (US)
Pages (from-to)1045-1051
Number of pages7
JournalSurgery (United States)
Issue number4
StatePublished - Apr 2023

All Science Journal Classification (ASJC) codes

  • Surgery


Dive into the research topics of 'Novel treatment strategy of targeting epigenetic dysregulation in pancreatic neuroendocrine tumors'. Together they form a unique fingerprint.

Cite this