TY - JOUR
T1 - (N,F)-Co-doped TiO 2
T2 - Synthesis, anatase-rutile conversion and Li-cycling properties
AU - Cherian, Christie T.
AU - Reddy, M. V.
AU - Magdaleno, Travis
AU - Sow, Chorng Haur
AU - Ramanujachary, K. V.
AU - Rao, G. V.Subba
AU - Chowdari, B. V.R.
PY - 2012/2/7
Y1 - 2012/2/7
N2 - Nitrogen and fluorine co-doped Ti-oxide, TiO 1.9N 0.05F 0.15 (TiO 2(N,F)), with the anatase structure is prepared by the pyro-ammonolysis of TiF 3. For the first time it is shown that TiO 2(N,F) and anatase-TiO 2 are converted to nanosize-rutile structure by high energy ball milling (HEB). The polymorphs are characterised by X-ray diffraction, Rietveld refinement, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and Raman spectra. The Li storage and cycling properties are examined by galvanostatic cycling and cyclic voltammetry in the voltage range 1-2.8 V vs. Li at 30 mA g -1. The performance of TiO 2(N,F) is much better than pure anatase-TiO 2 and showed a reversible capacity of 95 (±3) mA h g -1 stable up to 25 cycles with a coulombic efficiency of ∼98%. Nano-phase rutile TiO 2(N,F) showed an initial reversible capacity of 210 mA h g -1 which slowly degraded to 165 (±3) mA h g -1 after 50 cycles and stabilised between the 50 th and 60 th cycle whereas the nano-phase rutile-TiO 2 (prepared by HEB of anatase-TiO 2) exhibited a reversible capacity of 130 (±3) mA h g -1 which is stable in the range, 10-60 cycles. The crystal structure of anatase TiO 2(N,F) is not destroyed upon Li-cycling and is confirmed by ex situ XRD and HR-TEM.
AB - Nitrogen and fluorine co-doped Ti-oxide, TiO 1.9N 0.05F 0.15 (TiO 2(N,F)), with the anatase structure is prepared by the pyro-ammonolysis of TiF 3. For the first time it is shown that TiO 2(N,F) and anatase-TiO 2 are converted to nanosize-rutile structure by high energy ball milling (HEB). The polymorphs are characterised by X-ray diffraction, Rietveld refinement, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and Raman spectra. The Li storage and cycling properties are examined by galvanostatic cycling and cyclic voltammetry in the voltage range 1-2.8 V vs. Li at 30 mA g -1. The performance of TiO 2(N,F) is much better than pure anatase-TiO 2 and showed a reversible capacity of 95 (±3) mA h g -1 stable up to 25 cycles with a coulombic efficiency of ∼98%. Nano-phase rutile TiO 2(N,F) showed an initial reversible capacity of 210 mA h g -1 which slowly degraded to 165 (±3) mA h g -1 after 50 cycles and stabilised between the 50 th and 60 th cycle whereas the nano-phase rutile-TiO 2 (prepared by HEB of anatase-TiO 2) exhibited a reversible capacity of 130 (±3) mA h g -1 which is stable in the range, 10-60 cycles. The crystal structure of anatase TiO 2(N,F) is not destroyed upon Li-cycling and is confirmed by ex situ XRD and HR-TEM.
UR - http://www.scopus.com/inward/record.url?scp=84855685442&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84855685442&partnerID=8YFLogxK
U2 - 10.1039/c1ce05685a
DO - 10.1039/c1ce05685a
M3 - Article
AN - SCOPUS:84855685442
SN - 1466-8033
VL - 14
SP - 978
EP - 986
JO - CrystEngComm
JF - CrystEngComm
IS - 3
ER -