Nanolayer biomaterial coatings of silk fibroin for controlled release

Xianyan Wang, Xiao Hu, Andrea Daley, Olena Rabotyagova, Peggy Cebe, David L. Kaplan

Research output: Contribution to journalArticlepeer-review

144 Scopus citations

Abstract

An all-aqueous, stepwise deposition process with silk fibroin protein for the assembly of nanoscale layered controlled release coatings was exploited. Model compounds, Rhodamine B, Even Blue and Azoalbumin, representing small molecule drugs and therapeutically relevant proteins were incorporated in the nanocoating process and their loading and release behavior was quantified. In addition, the structure and morphology of the coatings were characterized. Release studies in vitro showed that control of β-sheet crystal content and the multilayer structure of the silk coatings correlated with the release properties of the incorporated compounds. In particular, higher crystallinity and a thicker silk capping layer suppressed the initial burst of release and prolonged the duration of release. These novel coatings and deposition approach provide a unique option to regulate structure and morphology, and thus release kinetics. The results also suggest these systems as a promising framework for surface engineering of biomaterials and medical devices to regulate the release of drugs, when considered with the all-aqueous process involved, the conformal nature of the coatings, the robust material properties of silk fibroin, and the degradability and biocompatibility of this family of protein.

Original languageEnglish (US)
Pages (from-to)190-199
Number of pages10
JournalJournal of Controlled Release
Volume121
Issue number3
DOIs
StatePublished - Aug 28 2007

All Science Journal Classification (ASJC) codes

  • Pharmaceutical Science

Fingerprint Dive into the research topics of 'Nanolayer biomaterial coatings of silk fibroin for controlled release'. Together they form a unique fingerprint.

Cite this