Abstract
It has been shown that the flow and shear characteristics of granular particles such as soils are significantly dependent on the shape of the particles. This is important from a practical viewpoint because a fundamental understanding of granular behavior will lead to an improved understanding of soil stability and influence the design of structural foundations. Furthermore, the calculation of soil stability and, consequently, structural stability is particularly useful during earthquake events. In previous work, we have demonstrated the applicability of X-ray and optical tomography measurements for characterizing 3-D shapes of natural sands and manufactured granular particles. In this paper, we extend the work to measure the arrangement and the orientation of an assemblage of such particles. A combination of X-ray computed tomography (CT) for measuring the coordinates of the individual particles and an iterative adaptive thresholding technique for computing the local variations in porosity is employed to generate porosity maps. Such maps can be used to gain a more fundamental understanding of the shear characteristics of granular particles. In this paper, we demonstrate the success of our technique by exercising the method on several sets of granular particlesglass beads (used as a control), natural Michigan Dune and Daytona Beach sand, and processed Dry #1 sand.
Original language | English (US) |
---|---|
Article number | 5423988 |
Pages (from-to) | 1192-1199 |
Number of pages | 8 |
Journal | IEEE Transactions on Instrumentation and Measurement |
Volume | 59 |
Issue number | 5 |
DOIs | |
State | Published - May 1 2010 |
All Science Journal Classification (ASJC) codes
- Instrumentation
- Electrical and Electronic Engineering
Fingerprint Dive into the research topics of 'Measurement of porosity in granular particle distributions using adaptive thresholding'. Together they form a unique fingerprint.
Equipment
-
Virtual Reality Lab
Shreekanth Mandayam (Manager) & George D. Lecakes (Manager)
Equipment/facility: Facility