TY - JOUR
T1 - Ksp1 is an autophagic receptor protein for the Snx4-assisted autophagy of Ssn2/Med13
AU - Hanley, Sara E.
AU - Willis, Stephen D.
AU - Doyle, Steven J.
AU - Strich, Randy
AU - Cooper, Katrina
N1 - Publisher Copyright:
© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2023
Y1 - 2023
N2 - Ksp1 is a casein II-like kinase whose activity prevents aberrant macroautophagy/autophagy induction in nutrient-rich conditions in yeast. Here, we describe a kinase-independent role of Ksp1 as a novel autophagic receptor protein for Ssn2/Med13, a known cargo of Snx4-assisted autophagy of transcription factors. In this pathway, a subset of conserved transcriptional regulators, Ssn2/Med13, Rim15, and Msn2, are selectively targeted for vacuolar proteolysis following nitrogen starvation, assisted by the sorting nexin heterodimer Snx4-Atg20. Here we show that phagophores also engulf Ksp1 alongside its cargo for vacuolar proteolysis. Ksp1 directly associates with Atg8 following nitrogen starvation at the interface of an Atg8-family interacting motif (AIM)/LC3-interacting region (LIR) in Ksp1 and the LIR/AIM docking site (LDS) in Atg8. Mutating the LDS site prevents the autophagic degradation of Ksp1. However, deletion of the C terminal canonical AIM still permitted Ssn2/Med13 proteolysis, suggesting that additional non-canonical AIMs may mediate the Ksp1-Atg8 interaction. Ksp1 is recruited to the perivacuolar phagophore assembly site by Atg29, a member of the trimeric scaffold complex. This interaction is independent of Atg8 and Snx4, suggesting that Ksp1 is recruited early to phagophores, with Snx4 delivering Ssn2/Med13 thereafter. Finally, normal cell survival following prolonged nitrogen starvation requires Ksp1. Together, these studies define a kinase-independent role for Ksp1 as an autophagic receptor protein mediating Ssn2/Med13 degradation. They also suggest that phagophores built by the trimeric scaffold complex are capable of receptor-mediated autophagy. These results demonstrate the dual functionality of Ksp1, whose kinase activity prevents autophagy while it plays a scaffolding role supporting autophagic degradation. Abbreviations: 3-AT: 3-aminotriazole; 17C: Atg17-Atg31-Atg29 trimeric scaffold complex; AIM: Atg8-family interacting motif; ATG: autophagy related; CKM: CDK8 kinase module; Cvt: cytoplasm-to-vacuole targeting; IDR: intrinsically disordered region; LIR: LC3-interacting region; LDS: LIR/AIM docking site; MoRF: molecular recognition feature; NPC: nuclear pore complex; PAS: phagophore assembly site; PKA: protein kinase A; RBP: RNA-binding protein; UPS: ubiquitin-proteasome system. SAA-TF: Snx4-assisted autophagy of transcription factors; Y2H: yeast two-hybrid.
AB - Ksp1 is a casein II-like kinase whose activity prevents aberrant macroautophagy/autophagy induction in nutrient-rich conditions in yeast. Here, we describe a kinase-independent role of Ksp1 as a novel autophagic receptor protein for Ssn2/Med13, a known cargo of Snx4-assisted autophagy of transcription factors. In this pathway, a subset of conserved transcriptional regulators, Ssn2/Med13, Rim15, and Msn2, are selectively targeted for vacuolar proteolysis following nitrogen starvation, assisted by the sorting nexin heterodimer Snx4-Atg20. Here we show that phagophores also engulf Ksp1 alongside its cargo for vacuolar proteolysis. Ksp1 directly associates with Atg8 following nitrogen starvation at the interface of an Atg8-family interacting motif (AIM)/LC3-interacting region (LIR) in Ksp1 and the LIR/AIM docking site (LDS) in Atg8. Mutating the LDS site prevents the autophagic degradation of Ksp1. However, deletion of the C terminal canonical AIM still permitted Ssn2/Med13 proteolysis, suggesting that additional non-canonical AIMs may mediate the Ksp1-Atg8 interaction. Ksp1 is recruited to the perivacuolar phagophore assembly site by Atg29, a member of the trimeric scaffold complex. This interaction is independent of Atg8 and Snx4, suggesting that Ksp1 is recruited early to phagophores, with Snx4 delivering Ssn2/Med13 thereafter. Finally, normal cell survival following prolonged nitrogen starvation requires Ksp1. Together, these studies define a kinase-independent role for Ksp1 as an autophagic receptor protein mediating Ssn2/Med13 degradation. They also suggest that phagophores built by the trimeric scaffold complex are capable of receptor-mediated autophagy. These results demonstrate the dual functionality of Ksp1, whose kinase activity prevents autophagy while it plays a scaffolding role supporting autophagic degradation. Abbreviations: 3-AT: 3-aminotriazole; 17C: Atg17-Atg31-Atg29 trimeric scaffold complex; AIM: Atg8-family interacting motif; ATG: autophagy related; CKM: CDK8 kinase module; Cvt: cytoplasm-to-vacuole targeting; IDR: intrinsically disordered region; LIR: LC3-interacting region; LDS: LIR/AIM docking site; MoRF: molecular recognition feature; NPC: nuclear pore complex; PAS: phagophore assembly site; PKA: protein kinase A; RBP: RNA-binding protein; UPS: ubiquitin-proteasome system. SAA-TF: Snx4-assisted autophagy of transcription factors; Y2H: yeast two-hybrid.
UR - http://www.scopus.com/inward/record.url?scp=85172078858&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85172078858&partnerID=8YFLogxK
U2 - 10.1080/15548627.2023.2259708
DO - 10.1080/15548627.2023.2259708
M3 - Article
C2 - 37733395
AN - SCOPUS:85172078858
SN - 1554-8627
JO - Autophagy
JF - Autophagy
ER -