Investigation of iridium, ruthenium, rhodium, and palladium binary metal oxide solid solution thin films for implantable neural interfacing applications

Gregory Taylor, Jeffrey Shallenberger, Saxon Tint, Andrew Fones, Hugh Hamilton, Lei Yu, Shahram Amini, Jeffrey Hettinger

Research output: Contribution to journalArticlepeer-review

Abstract

Metal oxide solid solution thin films containing binary mixtures of iridium, ruthenium, rhodium, and palladium were combinatorially synthesized by DC reactive magnetron sputtering to investigate the compositional dependence of properties relevant to neural interfacing applications. The binary metal oxides studied included Ir(1-x)MxOy where M = Pd, Rh, and Ru. The properties of the binary metal oxides are compared to that of their single metal oxide endmembers which include palladium oxide (PdOx), ruthenium oxide (RuOx), rhodium oxide (RhOx), and iridium oxide (IrOx). The binary metal oxides exceed the electrochemical performance of their respective single metal oxide endmembers (as measured by cyclic voltammetry) at film thicknesses generally greater than 700 nm. The binary metal oxide concentrations which produce robust microstructures and exceptional electrochemical performance have been identified to be but are not limited to x ≥ 0.5 for Ir(1-x)RhxOy, x ≥ 0.34 for Ir(1-x)RuxOy, and x ≥ 0.14 for Ir(1-x)Pdx Oy. XPS analyses suggest that the electrochemical enhancements observed are at least partly due to the presence of higher oxidation states in the binary metal oxides when compared to that of the corresponding single metal oxide endmembers.

Original languageEnglish (US)
Article number127803
JournalSurface and Coatings Technology
Volume426
DOIs
StatePublished - Nov 25 2021

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Investigation of iridium, ruthenium, rhodium, and palladium binary metal oxide solid solution thin films for implantable neural interfacing applications'. Together they form a unique fingerprint.

Cite this