TY - JOUR
T1 - Influence of epoxidized cardanol functionality and reactivity on network formation and properties
AU - Kinaci, Emre
AU - Can, Erde
AU - La Scala, John J.
AU - Palmese, Giuseppe R.
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/9
Y1 - 2020/9
N2 - Cardanol is a renewable resource based on cashew nut shell liquid (CNSL), which consists of a phenol ring with a C15 long aliphatic side chain in the meta position with varying degrees of unsaturation. Cardanol glycidyl ether was chemically modified to form side-chain epoxidized cardanol glycidyl ether (SCECGE) with an average epoxy functionality of 2.45 per molecule and was cured with petroleum-based epoxy hardeners, 4-4′-methylenebis(cyclohexanamine) and diethylenetriamine, and a cardanol-based amine hardener. For comparison, cardanol-based diphenol diepoxy resin, NC514 (Cardolite), and a petroleum-based epoxy resin, diglycidyl ether of bisphenol-A (DGEBA) were also evaluated. Chemical and thermomechanical analyses showed that for SCECGE resins, incomplete cure of the secondary epoxides led to reduced cross-link density, reduced thermal stability, and reduced elongation at break when compared with difunctional resins containing only primary epoxides. However, because of functionality greater than two, amine-cured SCECGE produced a Tg very similar to that of NC514 and thus could be useful in formulating epoxy with renewable cardanol content.
AB - Cardanol is a renewable resource based on cashew nut shell liquid (CNSL), which consists of a phenol ring with a C15 long aliphatic side chain in the meta position with varying degrees of unsaturation. Cardanol glycidyl ether was chemically modified to form side-chain epoxidized cardanol glycidyl ether (SCECGE) with an average epoxy functionality of 2.45 per molecule and was cured with petroleum-based epoxy hardeners, 4-4′-methylenebis(cyclohexanamine) and diethylenetriamine, and a cardanol-based amine hardener. For comparison, cardanol-based diphenol diepoxy resin, NC514 (Cardolite), and a petroleum-based epoxy resin, diglycidyl ether of bisphenol-A (DGEBA) were also evaluated. Chemical and thermomechanical analyses showed that for SCECGE resins, incomplete cure of the secondary epoxides led to reduced cross-link density, reduced thermal stability, and reduced elongation at break when compared with difunctional resins containing only primary epoxides. However, because of functionality greater than two, amine-cured SCECGE produced a Tg very similar to that of NC514 and thus could be useful in formulating epoxy with renewable cardanol content.
UR - http://www.scopus.com/inward/record.url?scp=85092040784&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85092040784&partnerID=8YFLogxK
U2 - 10.3390/polym12091956
DO - 10.3390/polym12091956
M3 - Article
AN - SCOPUS:85092040784
SN - 2073-4360
VL - 12
SP - 1
EP - 14
JO - Polymers
JF - Polymers
IS - 9
M1 - 1956
ER -