Incremental learning in non-stationary environments with concept drift using a multiple classifier based approach

Matthew Karnick, Michael D. Muhlbaier, Robi Polikar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

20 Scopus citations


We outline an incremental learning algorithm designed for nonstationary environments where the underlying data distribution changes over time. With each dataset drawn from a new environment, we generate a new classifier. Classifiers are combined through dynamically weighted majority voting, where voting weights are determined based on classifiers' age and accuracy on current and past environments. The most recent and relevant classifiers are weighted higher, allowing the algorithm to appropriately adapt to drifting concepts. This algorithm does not discard prior classifiers, allowing efficient learning of potentially cyclical environments. The algorithm learns incrementally, i.e., without access to previous data. Finally, the algorithm can use any supervised classifier as its base model, including those not normally capable of incremental learning. We present the algorithm and its performance using different base learners in different environments with varying types of drift.

Original languageEnglish (US)
Title of host publication2008 19th International Conference on Pattern Recognition, ICPR 2008
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Print)9781424421756
StatePublished - 2008
Externally publishedYes

Publication series

NameProceedings - International Conference on Pattern Recognition
ISSN (Print)1051-4651

All Science Journal Classification (ASJC) codes

  • Computer Vision and Pattern Recognition


Dive into the research topics of 'Incremental learning in non-stationary environments with concept drift using a multiple classifier based approach'. Together they form a unique fingerprint.

Cite this