Inception modules enhance brain tumor segmentation

Daniel E. Cahall, Ghulam Rasool, Nidhal C. Bouaynaya, Hassan M. Fathallah-Shaykh

Research output: Contribution to journalArticlepeer-review

44 Scopus citations

Abstract

Magnetic resonance images of brain tumors are routinely used in neuro-oncology clinics for diagnosis, treatment planning, and post-treatment tumor surveillance. Currently, physicians spend considerable time manually delineating different structures of the brain. Spatial and structural variations, as well as intensity inhomogeneity across images, make the problem of computer-assisted segmentation very challenging. We propose a new image segmentation framework for tumor delineation that benefits from two state-of-the-art machine learning architectures in computer vision, i.e., Inception modules and U-Net image segmentation architecture. Furthermore, our framework includes two learning regimes, i.e., learning to segment intra-tumoral structures (necrotic and non-enhancing tumor core, peritumoral edema, and enhancing tumor) or learning to segment glioma sub-regions (whole tumor, tumor core, and enhancing tumor). These learning regimes are incorporated into a newly proposed loss function which is based on the Dice similarity coefficient (DSC). In our experiments, we quantified the impact of introducing the Inception modules in the U-Net architecture, as well as, changing the objective function for the learning algorithm from segmenting the intra-tumoral structures to glioma sub-regions. We found that incorporating Inception modules significantly improved the segmentation performance (p < 0.001) for all glioma sub-regions. Moreover, in architectures with Inception modules, the models trained with the learning objective of segmenting the intra-tumoral structures outperformed the models trained with the objective of segmenting the glioma sub-regions for the whole tumor (p < 0.001). The improved performance is linked to multiscale features extracted by newly introduced Inception module and the modified loss function based on the DSC.

Original languageEnglish (US)
Article number44
JournalFrontiers in Computational Neuroscience
Volume13
DOIs
StatePublished - Jul 10 2019

All Science Journal Classification (ASJC) codes

  • Neuroscience (miscellaneous)
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'Inception modules enhance brain tumor segmentation'. Together they form a unique fingerprint.

Cite this