Impurity Purging through Systematic Process Development of a Continuous Two-Stage Crystallization

Drew Scott, Naomi E.B. Briggs, Anna Formosa, Annessa Burnett, Bimbisar Desai, Greg Hammersmith, Kersten Rapp, Gerard Capellades, Allan S. Myerson, Thomas D. Roper

Research output: Contribution to journalReview articlepeer-review

4 Scopus citations


A methodical development approach was deployed in a novel portable manufacturing (Pharmacy on Demand) unit to purify ciprofloxacin hydrochloride hydrate within assay, water content, and impurity specifications described by the United States Pharmacopeia (USP) monograph and ICH Q3A(R2) guidelines for new impurities in drug substances. A series of design-of-experiment (DOE) and one-factor at a time (OFAT) experiments led to the optimization and control of a continuous two-stage crystallization that increased both the purity and yield of ciprofloxacin hydrochloride hydrate. Additionally, a statistically significant linear model was derived in batch within a 20 °C range that tracked the level of a difficult-to-purge impurity in stage 1 of the purification. This model was tested in continuous flow and predicted the impurity removal within 5% accuracy. With parametric control of process parameters, determined by optimization and modeling work, continuous flow isolations produced an active pharmaceutical ingredient (API) which had no individual impurities above 0.07%, with an isolated yield of 74%. In addition, acceptance criteria for assay (between 98 and 102%) and water content (between 4.7 and 6.7%) were met per the USP monograph for ciprofloxacin hydrochloride hydrate for the first time in the novel POD system.

Original languageEnglish (US)
Pages (from-to)148-158
Number of pages11
JournalOrganic Process Research and Development
Issue number1
StatePublished - Jan 20 2023
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry
  • Organic Chemistry


Dive into the research topics of 'Impurity Purging through Systematic Process Development of a Continuous Two-Stage Crystallization'. Together they form a unique fingerprint.

Cite this