Hos2p/Set3p deacetylase complex signals secretory stress through the Mpk1p cell integrity pathway

T. J. Cohen, M. J. Mallory, R. Strich, T. P. Yao

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Perturbations in secretory function activate stress response pathways critical for yeast survival. Here we report the identification of the Hos2p/Set3p deacetylase complex (SET3C) as an essential component of the secretory stress response. Strains lacking core components of the Hos2p/Set3p complex exhibit hypersensitivity to secretory stress. Although not required for the unfolded protein response (UPR) and ribosomal gene repression, the Hos2p complex is required for proper activation of the Mpk1p/Slt2p cell integrity kinase cascade. Disruption of the Hos2p complex results in abrogated Mpk1p phosphorylation, whereas constitutive activation of the Mpk1p pathway rescues the hos2Δ mutant growth defect in response to secretory stress. Furthermore, Hos2p activity is required for the Mpk1p-mediated activation of stress-responsive transcription factor Rlm1p, but not for the stress-induced degradation of the C-type cyclin Ssn8p. Our results identify the Hos2p complex as a critical component of the secretory stress response and support the existence a coordinated stress response consisting of the UPR, ribosomal gene repression, and mitogen-activated protein kinase signaling in response to defects in secretory function.

Original languageEnglish (US)
Pages (from-to)1191-1199
Number of pages9
JournalEukaryotic Cell
Volume7
Issue number7
DOIs
StatePublished - Jul 2008
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Hos2p/Set3p deacetylase complex signals secretory stress through the Mpk1p cell integrity pathway'. Together they form a unique fingerprint.

Cite this