TY - GEN
T1 - High throughput carbon fiber surface modification
AU - Hinton, Zachary R.
AU - Kubota, Munetaka
AU - Thursch, Lavénia
AU - Deitzel, Joseph
AU - Palmese, Giuseppe R.
AU - Alvarez, Nicolas J.
N1 - Publisher Copyright:
Copyright 2019. Used by the Society of the Advancement of Material and Process Engineering with permission.
PY - 2019
Y1 - 2019
N2 - Typical commercial surface treatments for continuous carbon fibers are often unavailable for short fibers. As such, there is little variety of chopped fiber surfaces leading to non-ideal coating solutions which result in poor interfacial compatibility between fibers and matrix. In this work we develop a method of applying a highly effective coating using a high throughput technique for chopped carbon fibers. We show the ability to tune both the coating thickness and chemical functionality using processing parameters. The coatings are evaluated using EDS and X-ray photoelectron spectroscopy (XPS) for uniformity and composition. Using this technique, thermoplastic composites are highlighted showing an increase in interfacial shear strength (IFSS) of 25 MPa. This process shows promise for increasing the throughput of surface treatment of chopped fiber on the industrial scale. With this technique, we hope to increase the overall performance of commercial, discontinuous composites as well as expand the possibilities of carbon fiber technologies.
AB - Typical commercial surface treatments for continuous carbon fibers are often unavailable for short fibers. As such, there is little variety of chopped fiber surfaces leading to non-ideal coating solutions which result in poor interfacial compatibility between fibers and matrix. In this work we develop a method of applying a highly effective coating using a high throughput technique for chopped carbon fibers. We show the ability to tune both the coating thickness and chemical functionality using processing parameters. The coatings are evaluated using EDS and X-ray photoelectron spectroscopy (XPS) for uniformity and composition. Using this technique, thermoplastic composites are highlighted showing an increase in interfacial shear strength (IFSS) of 25 MPa. This process shows promise for increasing the throughput of surface treatment of chopped fiber on the industrial scale. With this technique, we hope to increase the overall performance of commercial, discontinuous composites as well as expand the possibilities of carbon fiber technologies.
UR - http://www.scopus.com/inward/record.url?scp=85068744376&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85068744376&partnerID=8YFLogxK
U2 - 10.33599/nasampe/s.19.1528
DO - 10.33599/nasampe/s.19.1528
M3 - Conference contribution
AN - SCOPUS:85068744376
T3 - International SAMPE Technical Conference
BT - SAMPE Conference and Exhibition
A2 - Ahlstrom, Kevin
A2 - Anderson, Jacob Preston
A2 - Beckwith, Scott
A2 - Becnel, Andrew Craig
A2 - Biermann, Paul Joseph
A2 - Buchholz, Matt
A2 - Cates, Elizabeth
A2 - Gardner, Brian
A2 - Harris, Jim
A2 - Knight, Michael J.
A2 - Reyes-Villanueva, German
A2 - Scarborough, Stephen E.
A2 - Sears, Phil
A2 - Thomas, James
A2 - Thostenson, Erik T.
PB - Soc. for the Advancement of Material and Process Engineering
T2 - SAMPE 2019 Conference and Exhibition
Y2 - 20 May 2019 through 23 May 2019
ER -