Gain-of-function experiments with bacteriophage lambda uncover residues under diversifying selection in nature

Rohan Maddamsetti, Daniel T. Johnson, Stephanie J. Spielman, Katherine L. Petrie, Debora S. Marks, Justin R. Meyer

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Viral gain-of-function mutations frequently evolve during laboratory experiments. Whether the specific mutations that evolve in the lab also evolve in nature and whether they have the same impact on evolution in the real world is unknown. We studied a model virus, bacteriophage λ, that repeatedly evolves to exploit a new host receptor under typical laboratory conditions. Here, we demonstrate that two residues of λ’s J protein are required for the new function. In natural λ variants, these amino acid sites are highly diverse and evolve at high rates. Insertions and deletions at these locations are associated with phylogenetic patterns indicative of ecological diversification. Our results show that viral evolution in the laboratory mirrors that in nature and that laboratory experiments can be coupled with protein sequence analyses to identify the causes of viral evolution in the real world. Furthermore, our results provide evidence for widespread host-shift evolution in lambdoid viruses.

Original languageEnglish (US)
Pages (from-to)2234-2243
Number of pages10
JournalEvolution
Volume72
Issue number10
DOIs
StatePublished - Oct 2018

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Genetics
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'Gain-of-function experiments with bacteriophage lambda uncover residues under diversifying selection in nature'. Together they form a unique fingerprint.

Cite this