TY - JOUR
T1 - Gβγ directly modulates vesicle fusion by competing with synaptotagmin for binding to neuronal SNARE proteins embedded in membranes
AU - Zurawski, Zack
AU - Page, Brian
AU - Chicka, Michael C.
AU - Brindley, Rebecca L.
AU - Wells, Christopher A.
AU - Preininger, Anita M.
AU - Hyde, Karren
AU - Gilbert, James A.
AU - Cruz-Rodriguez, Osvaldo
AU - Currie, Kevin P.M.
AU - Chapman, Edwin R.
AU - Alford, Simon
AU - Hamm, Heidi E.
N1 - Publisher Copyright:
© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
PY - 2017/7/21
Y1 - 2017/7/21
N2 - Gi/o-coupled G protein-coupled receptors can inhibit neurotransmitter release at synapses via multiple mechanisms. In addition to G-mediated modulation of voltage-gated calcium channels (VGCC), inhibition can also be mediated through the direct interaction of G subunits with the soluble N-ethylma-leimide attachment protein receptor (SNARE) complex of the vesicle fusion apparatus. Binding studies with soluble SNARE complexes have shown that G binds to both ternary SNARE complexes, t-SNARE heterodimers, and monomeric SNAREs, competing with synaptotagmin 1(syt1) for binding sites on t-SNARE. However, in secretory cells, G, SNAREs, and synaptotagmin interact in the lipid environment of a vesicle at the plasma membrane. To approximate this environment, we show that fluorescently labeled G interacts specifically with lipid-embedded t-SNAREs consisting of full-length syntaxin 1 and SNAP-25B at the membrane, as measured by fluorescence polarization. Fluorescently labeled syt1 undergoes competition with G for SNARE-binding sites in lipid environments. Mutant G subunits that were previously shown to be more efficacious at inhibiting Ca2-triggered exocytotic release than wild-type G were also shown to bind SNAREs at a higher affinity than wild type in a lipid environment. These mutant G subunits were unable to inhibit VGCC currents. Specific peptides corresponding to regions on G and G shown to be important for the interaction disrupt the interaction in a concentration-dependent manner. In in vitro fusion assays using full-length t- and v-SNAREs embedded in liposomes, G inhibited Ca2/synaptotagmin-dependent fusion. Together, these studies demonstrate the importance of these regions for the G-SNARE interaction and show that the target of G, downstream of VGCC, is the membrane-embedded SNARE complex.
AB - Gi/o-coupled G protein-coupled receptors can inhibit neurotransmitter release at synapses via multiple mechanisms. In addition to G-mediated modulation of voltage-gated calcium channels (VGCC), inhibition can also be mediated through the direct interaction of G subunits with the soluble N-ethylma-leimide attachment protein receptor (SNARE) complex of the vesicle fusion apparatus. Binding studies with soluble SNARE complexes have shown that G binds to both ternary SNARE complexes, t-SNARE heterodimers, and monomeric SNAREs, competing with synaptotagmin 1(syt1) for binding sites on t-SNARE. However, in secretory cells, G, SNAREs, and synaptotagmin interact in the lipid environment of a vesicle at the plasma membrane. To approximate this environment, we show that fluorescently labeled G interacts specifically with lipid-embedded t-SNAREs consisting of full-length syntaxin 1 and SNAP-25B at the membrane, as measured by fluorescence polarization. Fluorescently labeled syt1 undergoes competition with G for SNARE-binding sites in lipid environments. Mutant G subunits that were previously shown to be more efficacious at inhibiting Ca2-triggered exocytotic release than wild-type G were also shown to bind SNAREs at a higher affinity than wild type in a lipid environment. These mutant G subunits were unable to inhibit VGCC currents. Specific peptides corresponding to regions on G and G shown to be important for the interaction disrupt the interaction in a concentration-dependent manner. In in vitro fusion assays using full-length t- and v-SNAREs embedded in liposomes, G inhibited Ca2/synaptotagmin-dependent fusion. Together, these studies demonstrate the importance of these regions for the G-SNARE interaction and show that the target of G, downstream of VGCC, is the membrane-embedded SNARE complex.
UR - http://www.scopus.com/inward/record.url?scp=85025157663&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85025157663&partnerID=8YFLogxK
U2 - 10.1074/jbc.M116.773523
DO - 10.1074/jbc.M116.773523
M3 - Article
C2 - 28515322
AN - SCOPUS:85025157663
SN - 0021-9258
VL - 292
SP - 12165
EP - 12177
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 29
ER -