Abstract
Due to its portability, convenience, and low cost, incompletely closed near-infrared (ICNIR) imaging equipment (mixed light reflection imaging) is used for ultra thin sensor modules and have good application prospects. However, equipment with incompletely closed structure also brings some problems. Some finger vein images are not clear and there are sparse or even missing veins, which results in poor recognition performance. For these poor quality ICNIR images, however, there is additional fingerprint information in the image. The analysis of ICNIR images reveals that the fingerprint and finger vein in a single ICNIR image can be enhanced and separated. We propose a feature-level fusion recognition algorithm using a single ICNIR finger image. Firstly, we propose contrast limited adaptive histogram equalization (CLAHE) and grayscale normalization to enhance fingerprint and finger vein texture, respectively. Then we propose an adaptive radius local binary pattern (ADLBP) feature combined with uniform pattern to extract the features of fingerprint and finger vein. It solves the problem that traditional local binary pattern (LBP) is unable to describe the texture features of different sizes in ICNIR images. Finally, we fuse the feature vectors of ADLBP block histogram for a fingerprint and finger vein, and realize feature-layer fusion recognition by a threshold decision support vector machine (T-SVM). The experimentation results showed that the performance of the proposed algorithm was noticeably better than that of the single model recognition algorithm.
Original language | English (US) |
---|---|
Article number | 709 |
Journal | Symmetry |
Volume | 12 |
Issue number | 5 |
DOIs | |
State | Published - May 1 2020 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Computer Science (miscellaneous)
- Chemistry (miscellaneous)
- General Mathematics
- Physics and Astronomy (miscellaneous)