Exploring Switching Limit of SiC Inverter for Multi-kW Multi-MHz Wireless Power Transfer System

Yao Wang, Reza Kheirollahi, Fei Lu, Hua Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Silicon carbide (SiC) MOSFET has significantly facilitated high-power and high-frequency inverter design for wireless power transfer (WPT) systems. However, in the multi-kW multi-MHz area, the application of the SiC full-bridge inverter is still insufficient. This paper aims to explore the switching limit of SiC full-bridge inverter at multi-kW power levels and provides a methodology for MOSFET selection, inverter circuit design, and zero-voltage switching (ZVS) realization. Two sets of inverters are respectively implemented based on isolated gate driver UCC5390 and non-isolated IXRFD631 and tested at a switching frequency of 3MHz-4MHz and an input dc voltage of 350V550V. The experimental results firstly reveal the potential and capability of a SiC full-bridge inverter in achieving kilowatts high power level at multi-MHz switching frequency with 4.39kW at 3MHz and 3.19kW at 4MHz, and a switching limit of 4MHz is proposed for the SiC full-bridge inverter with overall consideration of ZVS availability and inverter safety.

Original languageEnglish (US)
Title of host publicationAPEC 2023 - 38th Annual IEEE Applied Power Electronics Conference and Exposition
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2952-2957
Number of pages6
ISBN (Electronic)9781665475396
DOIs
StatePublished - 2023
Event38th Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2023 - Orlando, United States
Duration: Mar 19 2023Mar 23 2023

Publication series

NameConference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC
Volume2023-March

Conference

Conference38th Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2023
Country/TerritoryUnited States
CityOrlando
Period3/19/233/23/23

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Exploring Switching Limit of SiC Inverter for Multi-kW Multi-MHz Wireless Power Transfer System'. Together they form a unique fingerprint.

Cite this