Experimental and simulation identification of xanthohumol as an inhibitor and substrate of ABCB1

Fangming Liu, Hannah Hoag, Chun Wu, Haizhou Liu, Hua Yin, Jianjun Dong, Zhonghua Qian, Feng Miao, Ming Liu, Jinlai Miao

    Research output: Contribution to journalArticlepeer-review

    3 Scopus citations

    Abstract

    Xanthohumol (XN) is a well-known prenylated flavonoid found in Humulus lupulus L. It is involved in several pharmacological activities, including the sensitization of doxorubicin-resistant breast cancer (MCF-7/ADR) cells to doxorubicin (DOX) through a reduction in cell viability and stemness. In the present study, we revealed another mechanism to further explain the reverse of the drug resistance of XN. In the MCF-7/ADR cell line, we found that XN inhibited the efflux functions of ATP-binding cassette subfamily B member 1 (ABCB1). We also observed that XN was a substrate of ABCB1 and stimulated its ATPase activity. Moreover, our results revealed that XN showed a synergic effect with the ABCB1 substrate colchicine (COL) in the MCF-7/ADR cell line. Further, we showed that XN bound to the central transmembrane domain (TMD) site, overlapping with the DOX binding site. This mechanism was supported by molecular modeling and simulation data, which revealed that XN bound to the ABCB1 transmembrane domain, where doxorubicin also binds, and its binding affinity was stronger than that of doxorubicin, resulting in less protein and ligand position fluctuation. These results support the XN-induced reversal of drug resistance via the inhibition of ABCB1-mediated transport of doxorubicin, stimulating ABCB1 ATPase activity and acting as a substrate of ABCB1.

    Original languageEnglish (US)
    Article number681
    JournalApplied Sciences (Switzerland)
    Volume8
    Issue number5
    DOIs
    StatePublished - Apr 27 2018

    All Science Journal Classification (ASJC) codes

    • Materials Science(all)
    • Instrumentation
    • Engineering(all)
    • Process Chemistry and Technology
    • Computer Science Applications
    • Fluid Flow and Transfer Processes

    Fingerprint

    Dive into the research topics of 'Experimental and simulation identification of xanthohumol as an inhibitor and substrate of ABCB1'. Together they form a unique fingerprint.

    Cite this