Engineering Adhesive and Antimicrobial Hyaluronic Acid/Elastin-like Polypeptide Hybrid Hydrogels for Tissue Engineering Applications

Ehsan Shirzaei Sani, Roberto Portillo-Lara, Andrew Spencer, Wendy Yu, Benjamin M. Geilich, Iman Noshadi, Thomas J. Webster, Nasim Annabi

Research output: Contribution to journalArticlepeer-review

48 Scopus citations

Abstract

Hydrogel-based biomaterials have been widely used for tissue engineering applications because of their high water content, swellability, and permeability, which facilitate transport and diffusion of essential nutrients, oxygen, and waste across the scaffold. These characteristics make hydrogels suitable for encapsulating cells and creating a cell supportive environment that promotes tissue regeneration when implanted in vivo. This is particularly important in the context of tissues whose intrinsic regenerative capacity is limited, such as cartilage. However, the clinical translation of hydrogels has been limited by their poor mechanical performance, low adhesive strength, uncontrolled degradation rates, and their susceptibility to bacterial colonization. Here, we introduce an elastic, antimicrobial, and adhesive hydrogel comprised of methacrylated hyaluronic acid (MeHA) and an elastin-like polypeptide (ELP), which can be rapidly photo-cross-linked in situ for the regeneration and repair of different tissues. Hybrid hydrogels with a wide range of physical properties were engineered by varying the concentrations of MeHA and ELP. In addition, standard adhesion tests demonstrated that the MeHA/ELP hydrogels exhibited higher adhesive strength to the tissue than commercially available tissue adhesives. MeHA/ELP hydrogels were then rendered antimicrobial through the incorporation of zinc oxide (ZnO) nanoparticles, and were shown to significantly inhibit the growth of methicillin-resistant Staphylococcus aureus (MRSA), as compared to controls. Furthermore, the composite adhesive hydrogels supported in vitro mammalian cellular growth, spreading, and proliferation. In addition, in vivo subcutaneous implantation demonstrated that MeHA/ELP hydrogels did not elicit any significant inflammatory response, and could be efficiently biodegraded while promoting the integration of new autologous tissue. In summary, we demonstrated for the first time that MeHA/ELP-ZnO hydrogel can be used as an adhesive and antimicrobial biomaterial for tissue engineering applications, because of its highly tunable physical characteristics, as well as remarkable adhesive and antimicrobial properties.

Original languageEnglish (US)
Pages (from-to)2528-2540
Number of pages13
JournalACS Biomaterials Science and Engineering
Volume4
Issue number7
DOIs
StatePublished - Jul 9 2018
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biomaterials
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Engineering Adhesive and Antimicrobial Hyaluronic Acid/Elastin-like Polypeptide Hybrid Hydrogels for Tissue Engineering Applications'. Together they form a unique fingerprint.

Cite this