Effects of Dimerization on the Deacylase Activities of Human SIRT2

Jie Yang, Nathan I. Nicely, Brian P. Weiser

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Human sirtuin isoform 2 (SIRT2) is an NAD+-dependent enzyme that functions as a lysine deacetylase and defatty-acylase. Here, we report that SIRT2 readily dimerizes in solution and in cells and that dimerization affects its ability to remove different acyl modifications from substrates. Dimerization of recombinant SIRT2 was revealed with analytical size exclusion chromatography and chemical cross-linking. Dimerized SIRT2 dissociates into monomers upon binding long fatty acylated substrates (decanoyl-, dodecanoyl-, and myristoyl-lysine). However, we did not observe dissociation of dimeric SIRT2 in the presence of acetyl-lysine. Analysis of X-ray crystal structures led us to discover a SIRT2 double mutant (Q142A/E340A) that is impaired in its ability to dimerize, which was confirmed with chemical cross-linking and in cells with a split-GFP approach. In enzyme assays, the SIRT2(Q142A/E340A) mutant had normal defatty-acylase activity and impaired deacetylase activity compared with the wild-type protein. These results indicate that dimerization is essential for optimal SIRT2 function as a deacetylase. Moreover, we show that SIRT2 dimers can be dissociated by a deacetylase and defatty-acylase inhibitor, ascorbyl palmitate. Our finding that its oligomeric state can affect the acyl substrate selectivity of SIRT2 is a novel mode of activity regulation by the enzyme that can be altered genetically or pharmacologically.

Original languageEnglish (US)
Pages (from-to)3383-3395
Number of pages13
JournalBiochemistry
Volume62
Issue number23
DOIs
StatePublished - Dec 5 2023
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biochemistry

Fingerprint

Dive into the research topics of 'Effects of Dimerization on the Deacylase Activities of Human SIRT2'. Together they form a unique fingerprint.

Cite this