TY - JOUR
T1 - Diabetes reduces basal retinal insulin receptor signaling reversal with systemic and local insulin
AU - Reiter, Chad E.N.
AU - Wu, Xiaohua
AU - Sandirasegarane, Lakshman
AU - Nakamura, Makoto
AU - Gilbert, Kirk A.
AU - Singh, Ravi S.J.
AU - Fort, Patrice E.
AU - Antonetti, David A.
AU - Gardner, Thomas W.
PY - 2006
Y1 - 2006
N2 - Diabetic retinopathy is characterized by early onset of neuronal cell death. We previously showed that insulin mediates a prosurvival pathway in retinal neurons and that normal retina expresses a highly active basal insulin receptor/Akt signaling pathway that is stable throughout feeding and fasting. Using the streptozotocin-induced diabetic rat model, we tested the hypothesis that diabetes diminishes basal retinal insulin receptor signaling concomitantly with increased diabetes-induced retinal apoptosis. The expression, phosphorylation status, and/or kinase activity of the insulin receptor and downstream signaling proteins were investigated in retinas of age-matched control, diabetic, and insulin-treated diabetic rats. Four weeks of diabetes reduced basal insulin receptor kinase, insulin receptor substrate (IRS)-1/2-associated phosphatidylinositol 3-kinase, and Akt kinase activity without altering insulin receptor or IRS-1/2 expression or tyrosine phosphorylation. After 12 weeks of diabetes, constitutive insulin receptor autophosphorylation and IRS-2 expression were reduced, without changes in p42/p44 mitogen-activated protein kinase or IRS-1. Sustained systemic insulin treatment of diabetic rats prevented loss of insulin receptor and Akt kinase activity, and acute intravitreal insulin administration restored insulin receptor kinase activity. Insulin treatment restored insulin receptor-β autophosphorylation in rat retinas maintained ex vivo, demonstrating functional receptors and suggesting loss of ligand as a cause for reduced retinal insulin receptor/Akt pathway activity. These results demonstrate that diabetes progressively impairs the constitutive retinal insulin receptor signaling pathway through Akt and suggests that loss of this survival pathway may contribute to the initial stages of diabetic retinopathy.
AB - Diabetic retinopathy is characterized by early onset of neuronal cell death. We previously showed that insulin mediates a prosurvival pathway in retinal neurons and that normal retina expresses a highly active basal insulin receptor/Akt signaling pathway that is stable throughout feeding and fasting. Using the streptozotocin-induced diabetic rat model, we tested the hypothesis that diabetes diminishes basal retinal insulin receptor signaling concomitantly with increased diabetes-induced retinal apoptosis. The expression, phosphorylation status, and/or kinase activity of the insulin receptor and downstream signaling proteins were investigated in retinas of age-matched control, diabetic, and insulin-treated diabetic rats. Four weeks of diabetes reduced basal insulin receptor kinase, insulin receptor substrate (IRS)-1/2-associated phosphatidylinositol 3-kinase, and Akt kinase activity without altering insulin receptor or IRS-1/2 expression or tyrosine phosphorylation. After 12 weeks of diabetes, constitutive insulin receptor autophosphorylation and IRS-2 expression were reduced, without changes in p42/p44 mitogen-activated protein kinase or IRS-1. Sustained systemic insulin treatment of diabetic rats prevented loss of insulin receptor and Akt kinase activity, and acute intravitreal insulin administration restored insulin receptor kinase activity. Insulin treatment restored insulin receptor-β autophosphorylation in rat retinas maintained ex vivo, demonstrating functional receptors and suggesting loss of ligand as a cause for reduced retinal insulin receptor/Akt pathway activity. These results demonstrate that diabetes progressively impairs the constitutive retinal insulin receptor signaling pathway through Akt and suggests that loss of this survival pathway may contribute to the initial stages of diabetic retinopathy.
UR - http://www.scopus.com/inward/record.url?scp=33745298554&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33745298554&partnerID=8YFLogxK
U2 - 10.2337/diabetes.55.04.06.db05-0744
DO - 10.2337/diabetes.55.04.06.db05-0744
M3 - Article
C2 - 16567541
AN - SCOPUS:33745298554
SN - 0012-1797
VL - 55
SP - 1148
EP - 1156
JO - Diabetes
JF - Diabetes
IS - 4
ER -