TY - JOUR
T1 - Cracking performance characterisation of aramid fiber-reinforced asphalt mixtures using digital image correlation
AU - Khan, Ali Raza
AU - Uddin, Kazi Zahir
AU - Ali, Ayman
AU - Koohbor, Behrad
AU - Mehta, Yusuf
AU - Lein, Wade
N1 - Publisher Copyright:
© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2024
Y1 - 2024
N2 - Conventional index-based testing of asphalt mixtures cannot accurately capture local deformation in a sample, limiting the usage of standard test measurements. The non-contact-based measurements proved effective to capture local deformation fields. This study aimed to capture the fatigue and thermal cracking behaviour of fiber-reinforced asphalt mixture (FRAM) by utilising digital image correlation (DIC). One binder (PG76-22), a diabase aggregate and three fibers (polyolefin/ aramid fibers (PFA) at 0.05% dosage and Sasobit-coated aramid fibers at 0.01% and 0.02% dosage) were used to prepare a total of four mixtures (one control and three FRAM). All these mixtures were produced at a local batch plant following manufacturer-recommended mixing methods. DIC analysis was performed for three-point bending beam (3PB) and disk shape compact tension (DCT) tests at intermediate temperature (25°C) and low temperatures of −12°C and −18°C. Based on index values from DCT and 3PB, the thermal and fatigue cracking performance enhancement was not significant. However, DIC analysis showed that, regardless of testing temperature, the crack propagated in a random pattern for FRAM, whereas the crack followed a relatively straight path for the control mix. Finally, based on DIC strain contours, FRAM mixtures exhibit distributed strain over a larger area compared to the control mix.
AB - Conventional index-based testing of asphalt mixtures cannot accurately capture local deformation in a sample, limiting the usage of standard test measurements. The non-contact-based measurements proved effective to capture local deformation fields. This study aimed to capture the fatigue and thermal cracking behaviour of fiber-reinforced asphalt mixture (FRAM) by utilising digital image correlation (DIC). One binder (PG76-22), a diabase aggregate and three fibers (polyolefin/ aramid fibers (PFA) at 0.05% dosage and Sasobit-coated aramid fibers at 0.01% and 0.02% dosage) were used to prepare a total of four mixtures (one control and three FRAM). All these mixtures were produced at a local batch plant following manufacturer-recommended mixing methods. DIC analysis was performed for three-point bending beam (3PB) and disk shape compact tension (DCT) tests at intermediate temperature (25°C) and low temperatures of −12°C and −18°C. Based on index values from DCT and 3PB, the thermal and fatigue cracking performance enhancement was not significant. However, DIC analysis showed that, regardless of testing temperature, the crack propagated in a random pattern for FRAM, whereas the crack followed a relatively straight path for the control mix. Finally, based on DIC strain contours, FRAM mixtures exhibit distributed strain over a larger area compared to the control mix.
UR - http://www.scopus.com/inward/record.url?scp=85213812793&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85213812793&partnerID=8YFLogxK
U2 - 10.1080/10298436.2024.2444511
DO - 10.1080/10298436.2024.2444511
M3 - Article
AN - SCOPUS:85213812793
SN - 1029-8436
VL - 25
JO - International Journal of Pavement Engineering
JF - International Journal of Pavement Engineering
IS - 1
M1 - 2444511
ER -