Confidence estimation using the incremental learning algorithm, learn++

Jeffrey Byorick, Robi Polikar

Research output: Chapter in Book/Report/Conference proceedingChapter

5 Scopus citations

Abstract

Pattern recognition problems span a broad range of applications, where each application has its own tolerance on classification error. The varying levels of risk associated with many pattern recognition applications indicate the need for an algorithm with the ability to measure its own confidence. In this work, the supervised incremental learning algorithm Learn++ [1], which exploits the synergistic power of an ensemble of classifiers, is further developed to add the capability of assessing its own confidence using a weighted exponential majority voting technique.

Original languageEnglish (US)
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
EditorsOkyay Kaynak, Ethem Alpaydin, Erkki Oja, Lei Xu
PublisherSpringer Verlag
Pages181-188
Number of pages8
ISBN (Print)3540404082, 9783540404088
DOIs
StatePublished - 2003
Externally publishedYes

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume2714
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Confidence estimation using the incremental learning algorithm, learn++'. Together they form a unique fingerprint.

Cite this