Abstract
This paper provides a theoretical and numerical framework to investigate the interactions between domain walls and arrays of dislocations in ferroelectric single crystals. A phase-field approach is implemented in a non-linear finite element method to determine equilibrium solutions for the coupled electromechanical interactions between a domain wall and a dislocation array. The numerical simulations demonstrate the effect of the relative size and orientation of dislocations on 180° and 90° domain wall configurations. In addition, results for the pinning strength of dislocations in the case that domain walls move due the application of external electric field and shear stress are computed. The presented numerical results are compared with the findings reported for charged defects and it is shown that non-charged defects, such as dislocations, can also interact strongly with domain walls, and therefore affect the ferroelectric material behavior.
Original language | English (US) |
---|---|
Pages (from-to) | 1491-1498 |
Number of pages | 8 |
Journal | International Journal of Solids and Structures |
Volume | 46 |
Issue number | 6 |
DOIs | |
State | Published - Mar 15 2009 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Modeling and Simulation
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
- Applied Mathematics