Abstract
The Mid-Brunhes Transition (MBT) began ∼430 ka with an increase in the amplitude of the 100 kyr climate cycles of the past 800 000 years. The MBT has been identified in ice-core records, which indicate interglaciations became warmer with higher atmospheric CO 2 levels after the MBT, and benthic oxygen isotope (δ 18 O) records, which suggest that post-MBT interglaciations had higher sea levels and warmer temperatures than pre-MBT interglaciations. It remains unclear, however, whether the MBT was a globally synchronous phenomenon that included other components of the climate system. Here, we further characterize changes in the climate system across the MBT through statistical analyses of ice-core and δ 18 O records as well as sea-surface temperature, benthic carbon isotope, and dust accumulation records. Our results demonstrate that the MBT was a global event with a significant increase in climate variance in most components of the climate system assessed here. However, our results indicate that the onset of high-amplitude variability in temperature, atmospheric CO 2 , and sea level at ∼ 430 ka was preceded by changes in the carbon cycle, ice sheets, and monsoon strength during Marine Isotope Stage (MIS) 14 and MIS 13.
Original language | English (US) |
---|---|
Pages (from-to) | 2071-2087 |
Number of pages | 17 |
Journal | Climate of the Past |
Volume | 14 |
Issue number | 12 |
DOIs | |
State | Published - Dec 21 2018 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Global and Planetary Change
- Stratigraphy
- Palaeontology