Catalysis of methanol-air mixture using platinum nanoparticles for microscale combustion

James R. Applegate, Howard Pearlman, Smitesh D. Bakrania

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

High surface area, active catalysts containing dispersed catalytic platinum nanoparticles (d p 11.6 nm) on a cordierite substrate were fabricated and characterized using TEM, XRD, and SEM. The catalyst activity was evaluated for methanol oxidation. Experimental results were obtained in a miniature-scale continuous flow reactor. Subsequent studies on the effect of catalyst loading and reactor flow parameters are reported. Repeat tests were performed to assess the stability of the catalyst and the extent of deactivation, if any, that occurred due to restructuring and sintering of the particles. SEM characterization studies performed on the postreaction catalysts following repeat tests at reasonably high operating temperatures (500()C corresponding to 0.3 T m for bulk platinum) showed evidence of sintering, yet the associated loss of surface area had minimal effect on the overall catalyst activity, as determined from bulk temperature measurements. The potential application of this work for improving catalytic devices including microscale reactors is also briefly discussed.

Original languageEnglish (US)
Article number460790
JournalJournal of Nanomaterials
Volume2012
DOIs
StatePublished - 2012
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Materials Science

Fingerprint

Dive into the research topics of 'Catalysis of methanol-air mixture using platinum nanoparticles for microscale combustion'. Together they form a unique fingerprint.

Cite this