Carbohydrate-protein interactions by "clicked" carbohydrate self-assembled monolayers

Yun Zhang, Sanzhong Luo, Yijun Tang, Lei Yu, Kuang Yu Hou, Jin Pei Cheng, Xiangqun Zeng, Peng George Wang

Research output: Contribution to journalArticlepeer-review

210 Scopus citations

Abstract

A Huisgen 1,3-dipolar cycloaddition "click chemistry" was employed to immobilize azido sugars (mannose, lactose, α-Gal) to fabricate carbohydrate self-assembled monolayers (SAMs) on gold. This fabrication was based on preformed SAM templates incorporated with alkyne terminal groups, which could further anchor the azido sugars to form well-packed, stable, and rigid sugar SAMs. The clicked mannose, lactose, and α-Gal trisaccharide SAMs were used in the analysis of specific carbohydrate-protein interactions (i.e., mannose-Con A; ECL-lactose, α-Gal-anti-Gal). The apparent affinity constant of Con A binding to mannose was (8.7 ± 2.8) × 10 5 and (3.9 ± 0.2) × 106 M-1 measured by QCM and SPR, respectively. The apparent affinity constants of lactose binding with ECL and α-Gal binding with polyclonal anti-Gal antibody were determined to be (4.6 ± 2.4) × 106 and (6.7 ± 3.3) × 106 M-1, respectively by QCM. SPR, QCM, AFM, and electrochemistry studies confirmed that the carbohydrate SAM sensors maintained the specificity to their corresponding lectins and nonspecific adsorption on the clicked carbohydrate surface was negligible. This study showed that the clicked carbohydrate SAMs in concert with nonlabel QCM or SPR offered a potent platform for high-throughput characterization of carbohydrate-protein interactions. Such a combination should complement other methods such as ITC and ELISA in a favorable manner and provide insightful knowledge for the corresponding complex glycobiological processes.

Original languageEnglish (US)
Pages (from-to)2001-2008
Number of pages8
JournalAnalytical Chemistry
Volume78
Issue number6
DOIs
StatePublished - Mar 15 2006
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry

Fingerprint

Dive into the research topics of 'Carbohydrate-protein interactions by "clicked" carbohydrate self-assembled monolayers'. Together they form a unique fingerprint.

Cite this